- Образование и эволюция звезд и планет

Презентация "Образование и эволюция звезд и планет" (10 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33

Презентацию на тему "Образование и эволюция звезд и планет" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 33 слайд(ов).

Слайды презентации

Образование и эволюция звезд и планет
Слайд 1

Образование и эволюция звезд и планет

Состав звезд. Большинство звезд состоит в основном из водорода (60…90%) и гелия (10…40%) и тяжелых элементов (0.1…3%). Такие звезды называются звездами населения 1. Тяжелые элементы образуются при вспышках т.н. новых звезд или при взрывах сверхновых. Наше Солнце с 74% водорода, 24% гелия и 2% тяжелы
Слайд 2

Состав звезд

Большинство звезд состоит в основном из водорода (60…90%) и гелия (10…40%) и тяжелых элементов (0.1…3%). Такие звезды называются звездами населения 1. Тяжелые элементы образуются при вспышках т.н. новых звезд или при взрывах сверхновых. Наше Солнце с 74% водорода, 24% гелия и 2% тяжелых элементов - звезда населения 1. Звезды населения 2 образуются в основном из первичного водорода и гелия и содержат очень мало тяжелых элементов.

Термоядерные реакции. Процесс конденсации межзвездной пыли сопровождается освобождением энергии частиц и соответствующим увеличением температуры. При температурах 107 К и плотности 100 г/см3 начинаются термоядерные реакции. Протон-протонная цепочка (выделяется 27 МэВ). p + p  d + e+ +  d + p  2
Слайд 3

Термоядерные реакции

Процесс конденсации межзвездной пыли сопровождается освобождением энергии частиц и соответствующим увеличением температуры. При температурах 107 К и плотности 100 г/см3 начинаются термоядерные реакции. Протон-протонная цепочка (выделяется 27 МэВ). p + p  d + e+ +  d + p  23He +  23He + 23He 24He + p + p Является основным источником энергии Солнца (ежесекундно выделяется 4 1026 Вт).

Если в звезде имеется некоторое количество углерода, то может осуществляться еще одна цепочка реакций, в результате чего также происходит превращение четырех ядер водорода в гелий, а углерод служит катализатором - углеродно-азотным циклом. Такие звезды более массивные и яркие - Сириус, одна из самых
Слайд 4

Если в звезде имеется некоторое количество углерода, то может осуществляться еще одна цепочка реакций, в результате чего также происходит превращение четырех ядер водорода в гелий, а углерод служит катализатором - углеродно-азотным циклом. Такие звезды более массивные и яркие - Сириус, одна из самых ярких звезд Северного полушария. Термоядерные реакции, протекающие внутри звезд, сопровождаются испусканием -квантов (ЭМ излучение), которые оказывают радиационное давление. Когда давление, обусловленное гравитацией, уравновешивается радиационным давление, сжатие звезды прекращается.

Характеристики звезд. Собственная светимость и цвет. Звезду можно изобразить точкой, которая движется по мере жизни и угасания звезды. Более массивные оказываются более горя- чими и яркими, а менее массивные – холодными и тусклыми. Для стабильных звезд диаграмма светимость-цвет образует т.н. главную
Слайд 5

Характеристики звезд

Собственная светимость и цвет. Звезду можно изобразить точкой, которая движется по мере жизни и угасания звезды. Более массивные оказываются более горя- чими и яркими, а менее массивные – холодными и тусклыми. Для стабильных звезд диаграмма светимость-цвет образует т.н. главную последовательность.

Эволюция звезд. По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии, что приводит к увеличению радиационного давления. Внешние слои звезды расширяются
Слайд 6

Эволюция звезд

По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии, что приводит к увеличению радиационного давления. Внешние слои звезды расширяются. Температура падает, излучаемый свет становится более красным, и звезда смещается вправо от главной последовательности. Этот процесс расширения идет до тех пор, пока диаметр заезды не увеличится в 200-300 раз, и звезда становится красным гигантом.

Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате расширения поглотит ее останки. По расчетам астрономов до этого момента пройдет около 5 млрд лет. Время пребывания обычной звезды в ста
Слайд 7

Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Землю из-за огромного количества выделившейся энергии, а затем в результате расширения поглотит ее останки. По расчетам астрономов до этого момента пройдет около 5 млрд лет. Время пребывания обычной звезды в стадии красного гиганта составляет около 107 лет. Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость-цвет. В этот период у большинства звезд нарушается равновесие, и они начинают пульсировать, изменяя свою светимость. Далее эволюция идет в зависимости от массы звезды.

Если масса меньше 1.4 сол-нечной массы, то израс-ходовав ядерное топливо, звезда охлаждается и в конце концов угасает. При этом она проходит через стадию неус-тойчивости, во время которой происходит периодическое возрастание светимости. Резкое возрастание свети-мости фиксируется как рождение новой з
Слайд 8

Если масса меньше 1.4 сол-нечной массы, то израс-ходовав ядерное топливо, звезда охлаждается и в конце концов угасает. При этом она проходит через стадию неус-тойчивости, во время которой происходит периодическое возрастание светимости. Резкое возрастание свети-мости фиксируется как рождение новой звезды. Далее стадия «новой» звезды переходит в стадию белого карлика, затем, после дальнейшего охлаждения – в стадию красного карлика, и наконец – в черного карлика.

Размер Солнца в сравнении с размерами красного и белого карликов. Размер Солнца в сравнении с размерами красного и белого гигантов
Слайд 9

Размер Солнца в сравнении с размерами красного и белого карликов

Размер Солнца в сравнении с размерами красного и белого гигантов

Эволюция звезды, масса которой больше 1.4 массы Солнца, кончается эффектным взрывом, и это считается рождением сверхновой звезды. После взрыва сверхновой возникают высокие давления и температуры, создаются условия для образования нейтронов. Поскольку для нейтроном электростатическое отталкивание отс
Слайд 10

Эволюция звезды, масса которой больше 1.4 массы Солнца, кончается эффектным взрывом, и это считается рождением сверхновой звезды. После взрыва сверхновой возникают высокие давления и температуры, создаются условия для образования нейтронов. Поскольку для нейтроном электростатическое отталкивание отсутствует, под действием тяготения нейтронное вещество коллапсирует, образуя маленький сверхплотный шар. Плотность в нем столь велика, что распад нейтрона оказывается запрещенным. Такие звездные тела называются нейтронными звездами.

Рождение сверхновой. Сверхновая 1987A в Большом Магеллановом Облаке расположена там, где на старых фотографиях была лишь звёздочка 12-ой величины.
Слайд 11

Рождение сверхновой

Сверхновая 1987A в Большом Магеллановом Облаке расположена там, где на старых фотографиях была лишь звёздочка 12-ой величины.

В 1968 г. были обнаружены объекты, являющиеся источником переменного радиоизлучения с частотой пульсации около 1 Гц. Они получили название пульсаров. Голд предложил модель, согласно которой пульсар – это вращающаяся нейтронная звезда. Время жизни пульсара 108 лет. В начале 60-х годов были обнаружен
Слайд 12

В 1968 г. были обнаружены объекты, являющиеся источником переменного радиоизлучения с частотой пульсации около 1 Гц. Они получили название пульсаров. Голд предложил модель, согласно которой пульсар – это вращающаяся нейтронная звезда. Время жизни пульсара 108 лет. В начале 60-х годов были обнаружены радиоисточники, связанные с объектами голубого цвета, напоминающими звезды. Их назвали квазизвездами, или квазарами. Происхождение и строение квазаров в настоящее время неясно. Установлено, что для них характерно сильное красное смещение, следовательно можно предположить, что квазары – наиболее удаленные и быстро движущиеся объекты во вселенной.

До 90% вещества Вселенной - «скрытая» масса. Американский физик Уиллер в 1969 г. предложил термин черная дыра для космического объекта со скрытой массой. ЧД возникает в результате сжатия космического объекта, если его масса превышает массу Солнца в три раза. Звезда превращается в ЧД с радиусом приме
Слайд 13

До 90% вещества Вселенной - «скрытая» масса. Американский физик Уиллер в 1969 г. предложил термин черная дыра для космического объекта со скрытой массой. ЧД возникает в результате сжатия космического объекта, если его масса превышает массу Солнца в три раза. Звезда превращается в ЧД с радиусом примерно 3 км. Никакое природный объект не может выйти за предела ЧД. У нее такое большое гравитационное поле, что даже ЭМ излучение не может ее покинуть.

Видимая звезда обращается вокруг своего невидимого партнера. Некоторые из таких систем, например Лебедь Х-1, являются еще и мощными источниками рентгеновского излучения. С поверхности видимой звезды "сдувается" вещество, которое падает на вторую, невидимую звезду, вращаясь по спирали и, си
Слайд 14

Видимая звезда обращается вокруг своего невидимого партнера. Некоторые из таких систем, например Лебедь Х-1, являются еще и мощными источниками рентгеновского излучения. С поверхности видимой звезды "сдувается" вещество, которое падает на вторую, невидимую звезду, вращаясь по спирали и, сильно разогреваясь, испускает рентгеновское излучение.

Существование ЧД можно описать в рамках ОТО, позволяющей для любого объекта, имеющего массу, рассчитать т.н. гравитационный радиус, или радиус сферы Шварцшильда. ЧД искривляет пространство и тормозит время. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленно
Слайд 15

Существование ЧД можно описать в рамках ОТО, позволяющей для любого объекта, имеющего массу, рассчитать т.н. гравитационный радиус, или радиус сферы Шварцшильда. ЧД искривляет пространство и тормозит время. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленного наблюдателя. В 1975 г. С.Хокинг показал, что гравитационное поле вблизи поверхности ЧД рождает из вакуума пары частиц, одна из которых захватывается ЧД, а другая улетает в окружающее пространство, т.е. ЧД постепенно рассеивается в космическом пространстве - круговорот материи во Вселенной.

Эволюция Солнечной системы. Солнечная система включает в себя: центральное тело (Солнце), группу ближайших к нему планет (Меркурий, Венера, Земля, Марс), астероидный пояс из десятков тысяч более удаленных мелких планет (астероидов), группу внешних планет (Юпитер, Сатурн, Уран, Нептун), Плутон, котор
Слайд 16

Эволюция Солнечной системы

Солнечная система включает в себя: центральное тело (Солнце), группу ближайших к нему планет (Меркурий, Венера, Земля, Марс), астероидный пояс из десятков тысяч более удаленных мелких планет (астероидов), группу внешних планет (Юпитер, Сатурн, Уран, Нептун), Плутон, который недавно был признан не планетой, а астероидом, около 90 спутников планет, неопределенного числа комет и межзвездную среду в виде плазмы, космической пыли, ЭМ излучения и потоков элементарных частиц.

Наше Солнце- типичная звезда-карлик (d=1391 тыс км, М=1.989 1030 кг) спектрального класса G-2 (Т=5800 К, L=3.88 1026 Вт)– светящийся газовый шар, не имеющий четкой границы, плотность его убывает постепенно, но благодаря фотосфере создается иллюзия, что Солнце имеет поверхность. Источник солнечной эн
Слайд 18

Наше Солнце- типичная звезда-карлик (d=1391 тыс км, М=1.989 1030 кг) спектрального класса G-2 (Т=5800 К, L=3.88 1026 Вт)– светящийся газовый шар, не имеющий четкой границы, плотность его убывает постепенно, но благодаря фотосфере создается иллюзия, что Солнце имеет поверхность. Источник солнечной энергии – термоядерные реакции. Энергия из недр переносится излучением, а в тонком внешнем слое – конвекцией. С конвективным движением связано существование т.н. солнечных пятен. Регулярные наблюдения за пятнами на Солнце ведутся с 1610 г. – изобретения телескопа.

Известны 11-летние циклы солнечной активности. Периоды высокой и низкой солнечной активности совпадают с изменением земного климата. За весь охваченный исследованиями период Солнце никогда не было таким активным, как за последние 60 лет. Большая часть светового потока Солнца испускается фотосферой в
Слайд 19

Известны 11-летние циклы солнечной активности. Периоды высокой и низкой солнечной активности совпадают с изменением земного климата. За весь охваченный исследованиями период Солнце никогда не было таким активным, как за последние 60 лет. Большая часть светового потока Солнца испускается фотосферой в виде ЭМ излучения видимого и инфракрасного диапазона. Над фотосферой расположена корона Солнца – самая нестабильная оболочка Солнца. Горячая плазма, истекающая из короны, формирует солнечный ветер – поток ионов (90% - протоны, 4% - альфа-частицы) и электронов. Скорость солнечного ветра 800-900 км/с. Солнечный ветер и магнитное поле заполняют собой всю солнечную систему. Земля и другие планеты находятся фактически в короне Солнца.

Солнце
Слайд 20

Солнце

Образование и эволюция звезд и планет Слайд: 20
Слайд 21
Суммарная масса планет составляет примерно 1/743 массы Солнца. Орбиты планет лежат примерно в одной плоскости. Все планеты кроме Венеры вращаются с запада на восток, Венера вращается в противоположном направлении. Планеты заметно отличаются по составу: гигантские внешние планеты содержат больше водо
Слайд 22

Суммарная масса планет составляет примерно 1/743 массы Солнца. Орбиты планет лежат примерно в одной плоскости. Все планеты кроме Венеры вращаются с запада на восток, Венера вращается в противоположном направлении. Планеты заметно отличаются по составу: гигантские внешние планеты содержат больше водорода, гелия, воды, метана, внутренние – больше тяжелых элементов. Как правило, по мере удаления от Солнца содержание компонент убывает по ряду: Fe, Ni  O, Si, Mg  H2O, CH4. Состав метеоритов отражает состав остальных тел Солнечной системы. В метеоритах обнаружено около 100 различных минералов, 80 из них встречается на Земле. Преобладают каменные метеориты.

Наличие в составе тел Солнечной системы, помимо водорода и гелия, тяжелых элементов свидетельствует о том, что протопланетная среда возникла в результате взрыва сверхновой. Первичная туманность участвует в общем вращении с Галактикой. При определенных условиях вращения, фрагменты первичной туманност
Слайд 23

Наличие в составе тел Солнечной системы, помимо водорода и гелия, тяжелых элементов свидетельствует о том, что протопланетная среда возникла в результате взрыва сверхновой. Первичная туманность участвует в общем вращении с Галактикой. При определенных условиях вращения, фрагменты первичной туманности могут сжиматься до образования одиночных устойчивых звезд типа Солнца. В процессе эволюции каждой такой звезды вокруг нее формируется газопылевой диск. За примерно 106 лет центр диска превращается в относительно медленно вращающееся Солнце с массой 2 1030 кг, а быстро вращающаяся внешняя часть диска позднее превращается в систему планет, их спутников и астероидов с общей массой 0.1 массы Солнца. Близость состава тел солнечной системы, движение этих тел по схожим орбитам указывает на общность формирования всей Солнечной системы.

Астероиды и кометы представляют собой остатки роя допланетных тел. Крупнейшие астероиды (> 100 км) образовались еще до образования планет, а мелкие и средние образовались при столкновении и разрушении крупных. Происхождение комет связано с влиянием ближайших звезд на наиболее удаленные малые тела
Слайд 24

Астероиды и кометы представляют собой остатки роя допланетных тел. Крупнейшие астероиды (> 100 км) образовались еще до образования планет, а мелкие и средние образовались при столкновении и разрушении крупных. Происхождение комет связано с влиянием ближайших звезд на наиболее удаленные малые тела планетной системы, что еще больше смещало эти тела и вытягивало их орбиты. Система спутников планет образовалась примерно по той же схеме, что и планетная система в целом. Исключение составляют спутники, вращающиеся в противоположном направлении. Таких спутников крайне мало, они есть только у Юпитера, Сатурна и Нептуна. Их происхождение связано с захватом планетами пролетавших рядом малых небесных тел. Земля каждые сутки захватывает примерно 260 000 т метеоритного вещества.

Эволюция Земли (М=6 1024 кг, R=6.37 тыс км). Модель земных недр: Твердая земная кора толщиной 30-60 км на континентах и 3-17 км в океанах; Мантия, достигающая глубины 3000 км; Ядро земли, внешняя часть которого жидкая (до глубины 5000 км), а внутренняя часть радиусом 1500 км – предположительно твер
Слайд 25

Эволюция Земли (М=6 1024 кг, R=6.37 тыс км)

Модель земных недр: Твердая земная кора толщиной 30-60 км на континентах и 3-17 км в океанах; Мантия, достигающая глубины 3000 км; Ядро земли, внешняя часть которого жидкая (до глубины 5000 км), а внутренняя часть радиусом 1500 км – предположительно твердая.

Эволюция Земли. В эволюции формы Земли основную роль играла сферическая симметрия гравитационного поля. Из-за вращения и других причин Земля не является точной сферой, а ближе к эллипсоиду вращения. В ранний период образования протопланеты сперва конденсировались тяжелые частицы, образуя ядро, а зат
Слайд 26

Эволюция Земли

В эволюции формы Земли основную роль играла сферическая симметрия гравитационного поля. Из-за вращения и других причин Земля не является точной сферой, а ближе к эллипсоиду вращения. В ранний период образования протопланеты сперва конденсировались тяжелые частицы, образуя ядро, а затем на него оседали более легкие конденсаты в виде силикатов, постепенно образуя мантию планеты. Жидкая фаза в недрах Земли присутствует до сих пор, что подтверждается выбросами лавы при извержении вулканов.

Земная кора вместе с подстилающим ее слоем мантии образует литосферу. Литосфера «плавает» на верхнем слое мантии, называемом астеносферой. Подстилающие земную кору слои пластичны и подвижны. В этих слоях имеют место горизонтальных и вертикальные перемещения вещества мантии, приводящие к разломам в з
Слайд 27

Земная кора вместе с подстилающим ее слоем мантии образует литосферу. Литосфера «плавает» на верхнем слое мантии, называемом астеносферой. Подстилающие земную кору слои пластичны и подвижны. В этих слоях имеют место горизонтальных и вертикальные перемещения вещества мантии, приводящие к разломам в земной коре, ее делению на фрагменты, к их взаимному перемещению и погружению в мантию. Такие фрагменты называются литосферными плитами. По линиям разломов имеет место вулканическая активность.

На всех этапах эволюции Земли происходила дегазация твердого и жидкого материала, в результате чего возникла первичная атмосфера. Из нее конденсировалась вода – возникла гидросфера. Атмосферу можно разделить на несколько слое: Тропосфера (высота 8-17 км) обеспечивает круговорот воды в природе; Страт
Слайд 28

На всех этапах эволюции Земли происходила дегазация твердого и жидкого материала, в результате чего возникла первичная атмосфера. Из нее конденсировалась вода – возникла гидросфера. Атмосферу можно разделить на несколько слое: Тропосфера (высота 8-17 км) обеспечивает круговорот воды в природе; Стратосфера (до 55 км) содержит повышенную концентрацию озона, защищающего все живое от действия ультрафиолетовых лучей; Ионосфера (выше 55 км) защищает от космического излучения и отражает радиоволны, обеспечивая глобальную радиосвязь.

Первичная атмосфера была обогащена углекислым газом. Глобальное изменение атмосферы наступило около 2 млрд лет назад и связано с фотосинтезирующей деятельностью растений. В результате атмосфера обогатилась кислородом и стабилизировалась по составу, что в сочетании с прочими благоприятными условиями
Слайд 29

Первичная атмосфера была обогащена углекислым газом. Глобальное изменение атмосферы наступило около 2 млрд лет назад и связано с фотосинтезирующей деятельностью растений. В результате атмосфера обогатилась кислородом и стабилизировалась по составу, что в сочетании с прочими благоприятными условиями обеспечило возможность возникновения и развития разнообразных форм жизни на Земле. Для жизни наиболее важна та часть Земли, в которой обитают живые существа, т.е. биосфера. Она включает в себя все живое, гидросферу, те области литосферы и атмосферы, в которых обнаруживается жизнь.

Источником нагрева Земли являлись: солнечное излучение, гравитационное сжатие, распад радиоактивных изотопов, удары захватываемых Землей космических тел. Последние источники были особенно важны на ранних стадиях формирования Земли. Наиболее мощным и распределенным по всему объему планеты было выделе
Слайд 30

Источником нагрева Земли являлись: солнечное излучение, гравитационное сжатие, распад радиоактивных изотопов, удары захватываемых Землей космических тел. Последние источники были особенно важны на ранних стадиях формирования Земли. Наиболее мощным и распределенным по всему объему планеты было выделение энергии радиоактивного распада короткоживущих радиоактивных изотопов, почти исчезнувших к настоящему времени. Солнечное излучение нагревает только тонкий поверхностный слой планеты.

Солнечно-земные связи. После вспышки на Солнце: через 8 минут – ЭМ излучение; начиная с 10.5 минут – солнечные космические лучи; через 1-2 суток ударная волна магнитного поля – магнитная буря. Последствия: Ионизация верхних слоев атмосферы, разрушение озонового слоя, ухудшение радиосвязи, радиационн
Слайд 31

Солнечно-земные связи

После вспышки на Солнце: через 8 минут – ЭМ излучение; начиная с 10.5 минут – солнечные космические лучи; через 1-2 суток ударная волна магнитного поля – магнитная буря. Последствия: Ионизация верхних слоев атмосферы, разрушение озонового слоя, ухудшение радиосвязи, радиационная опасность. А.Л.Чижевский в 1915 г. обратил внимание на циклическую связь между некоторыми эпидемиями и образованием солнечных пятен. Влияние на процессы в биосфере Земли (динамика популяции животных, эпидемии, эпизоотии, количество сердечно-сосудистых кризов и т.д.)

Образование и эволюция звезд и планет Слайд: 31
Слайд 32
На примере образования Солнечной системы видно, как в сложной открытой материальной системе из вещества в элементарной форме и хаотизированном состоянии самопроизвольно возникает упорядоченная сложная многоуровневая система космических макротел, в которой при определенных условиях возникла еще более
Слайд 33

На примере образования Солнечной системы видно, как в сложной открытой материальной системе из вещества в элементарной форме и хаотизированном состоянии самопроизвольно возникает упорядоченная сложная многоуровневая система космических макротел, в которой при определенных условиях возникла еще более сложная самоорганизующаяся и самоподдерживающаяся система – живая материя.

Список похожих презентаций

Расстояние до звезд

Расстояние до звезд

Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется методом параллакса. Он ...
Пространственная скорость звезд

Пространственная скорость звезд

Собственное движение звезды. Собственное движение измеряется в секундах дуги в год μ [ ″/год ]. В 720г И. Синь (683-727, Китай) в ходе углового изменения ...
Расположение планет в солнечной системе.

Расположение планет в солнечной системе.

Планеты-гиганты — четыре планеты Солнечной системы: Юпитер, Сатурн, Уран, Нептун; расположены за пределами кольца малых планет. Сравнительно с твёрдотельными ...
Парад планет 2012

Парад планет 2012

Древние Майя – кто они? Майя — цивилизация Центральной Америки, начавшая формироваться 2000 г. до н. э. майя имели высокоразвитую культуру с хорошим ...
Происхождение планет

Происхождение планет

Раздел астрономии, занимающийся изучением происхождения и эволюции небесных тел, – звезд (в том числе Солнца), планет (в том числе Земли), и других ...
Основные характеристики звезд

Основные характеристики звезд

Диаграмма «спектр – светимость». В самом начале XX в. датский астроном Герцшпрунг и несколько позже американский астрофизик Рессел установили существование ...
Парад планет

Парад планет

ИЗВЕСТНЫЕ ФАКТЫ: Факт №1. 21 декабря 2012 года произойдет парад планет. Четыре планеты нашей солнечной системы: Сатурн, Юпитер, Марс и Земля выстроятся ...
Законы движения планет

Законы движения планет

В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. И. Ньютон вывел формулу для закона всемирного тяготения. ...
Законы движения планет

Законы движения планет

Конфігурації планет. Конфігурації планет визначають розташування планет відносно Землі й Сонця та обумовлюють їх видимість на небосхилі. Усі планети ...
Двойные звезды, масса звезд

Двойные звезды, масса звезд

Повторение материала. Существуют ли звезды спектрального класса А с абсолютной звездной величиной +4m. Какие звезды самые горячие? Может ли светимость ...
Двойные звезды. масса звезд

Двойные звезды. масса звезд

Двойные звезды. Двойные звезды — это две (иногда встречается три и более) звезды, обращающиеся вокруг общего центра тяжести. Существуют разные двойные ...
Движение планет солнечной системы

Движение планет солнечной системы

Движение планет Солнечной системы. Говоря о движении планет в Солнечной системе, хочется сказать, что практически все планеты, кометы и астероиды, ...
Движение звезд в тесных двойных системах с консервативным обменом масс

Движение звезд в тесных двойных системах с консервативным обменом масс

общая формулировка задачи. ГРАФИКИ С УЧЕТОМ РЕАКТИВНЫХ СИЛ (сплошная линия) И БЕЗ (пунктир). 1. Определение траекторий перетекания СТРУИ с учетом ...
Возникновение планет

Возникновение планет

Какие загадочные процессы, происходившие во Вселенной миллиарды лет назад, привели к образованию нашей Земли и других планет? Основоположниками современной ...
Связь между физическими характеристиками звезд

Связь между физическими характеристиками звезд

Диаграмма Герцшпрунга - Ресселла. В 1911г Эйнар Герцшпрунг (1873-1967, Голландия) установил зависимость светимости звезд с их спектральными классами, ...
Зоопарк нейтронных звезд

Зоопарк нейтронных звезд

Где почитать? Элементы.Ру (www.elementy.ru). Астронет (www.astronet.ru). Земля и Вселенная (ziv.telescopes.ru blog.astrotop.ru). Предсказание ... ...
Внутреннее строение солнца и звезд главной последовательности

Внутреннее строение солнца и звезд главной последовательности

Ядро Солнца. Фотосфера. Хромосфера. Солнечное затмение 1999 года. Хромосфера видна в виде тонкой розовой полоски вокруг диска Луны. Корона. Нейтринный ...
Мир звезд

Мир звезд

Мы живем более жизнью космоса, чем Жизнью Земли, так как космос бесконечно значительнее Земли по своему объему, массе, времени... К. Э. Циолковский. ...
Парад планет

Парад планет

земля меркурий уран луна венера юпитер марс нептун сатурн солнце Затмения Ученые Десятая планета. Масса  = 1.99* 1030 кг. Диаметр  = 1.392.000 км. ...
Мир звезд

Мир звезд

Без повторения нет глубины. Что объединяет этих людей? Г. Ландау Аристотель Птолемей. 2. На пьедестале памятника Копернику в Варшаве высечены слова: ...

Конспекты

Образование электромагнитных волн. Теория Максвелла

Образование электромагнитных волн. Теория Максвелла

Разработка уроков. Образование электромагнитных волн. Теория Максвелла. Тема. . Образование электромагнитных волн. Теория Максвелла. Тип:. сообщение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.