- Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона

Конспект урока «Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона» по физике

Урок № 48-169 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона.

Колебания — движения или состояния, повто­ряющиеся во времени.

Электромагнитные колебания — это колебания электрических и магнитных полей, которые сопро­вождаются периодическим измене­нием заряда, тока и напряжения.

Колеба­тельный контур — это система, состоящая из катушки индуктив­ности и конденсатора (рис. а).

Если конденсатор зарядить и замк­нуть на катушку, то по катушке потечет ток (рис. б). Когда кон­денсатор разрядится, ток в цепи не прекратится из-за самоиндук­ции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор (рис. в).

Ток в данном направлении прекратится, и процесс повторится в обратном направлении (рис. г).

Таким образом, в колеба­тельном контуре происхо­дят электромагнитные колеба­ния из-за превращения энергии электрического поля конденсато­ра (WЭ= ) в энергию магнит­ного поля катушки с током (WМ =), и наоборот.

Гармонические колебания - периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса.

Уравнение, описывающее свободные электромагнитные колебания, принимает вид

q"= — ω02q (q"- вторая производная.

Основные характеристики колебательного движения:

Период колебаний - минимальный промежуток времени Т, через который процесс полностью повторяется.

Амплитуда гармонических колебаний - модуль наибольшего значения колеблющейся величины.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например в секунду. Если одно колебание совершается за время Т, то число колебаний за 1 с ν определяется так: ν = 1/Т.

Напомним, что в Международной системе единиц (СИ) частота колебаний равна единице, если за 1 с совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Генриха Ге р ц а.

Через промежуток времени, равный периоду Т, т. е. при увеличении аргумента косинуса на ω0Т, значение заряда повторяется и косинус принимает прежнее значение. Из курса математики известно, что наименьший период косинуса равен 2л. Следовательно, ω0Т =2π,откуда ω0= =2πν Таким образом, величина ω0 — это число колебаний, но не за 1 с, а за 2л с. Она называется циклической или круговой частотой.

Частоту свободных колебаний называют собственной частотой колебательной системы. Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту ω0 от частоты ν можно по обозначениям.

По аналогии с решением дифференциального уравнения для механической колебательной систе­мы циклическая частота свободных электриче­ских колебаний равна:ω0=

Период свободных колебаний в контуре равен: Т==2π - формула Томсона.

Фаза колебаний (от греческого слова phasis – появление, ступень развития какого-либо явления) – величина φ, стоящая под знаком косинуса или синуса. Выражается фаза в угловых единицах – радианах. Фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут отличаться друг от друга фазами.

Так как ω0= , то φ= ω0Т=2π. Отношение показывает, какая часть периода прошла от момента начала колебаний. Любому значению времени, выраженному в долях периода, соответствует значение фазы, выраженное в радианах. Так, по прошествии времени t= (четверти периода) φ=, по прошествии половины периода φ = π, по прошествии целого периода φ=2π и т.д.Можно изобразить на графике зависимость

заряда не от времени, а от фазы. На рисунке показана та же косинусоида, что и на предыдущем, но на горизонтальной оси отложены вместо времени

различные значения фазы φ.

Соответствие между механическими и электрическими величинами в колебательных процессах

Механические величины

Электрические величины

Координата x

Заряд q

Скорость v

Сила тока I

Масса т

Индуктивность L

Жесткость пружины k

Величина, обратная емкости

Потенциальная энергия

Энергия электрического поля

Кинетическая энергия

Энергия магнитного поля

Задачи.

942(932). Начальный заряд, сообщенный конденсатору колебательного контура, уменьшили в 2 раза. Во сколько раз изменились: а) амплитуда напряжения; б) амплитуда силы то­ка;

в) суммарная энергия электрического поля конденсатора и магнитного поля катушки?

943(933). При увеличении напряжения на конденсаторе колебательного контура на 20 В амплитуда силы тока увели­чилась в 2 раза. Найти начальное напряжение.

945(935). Колебательный контур состоит из конденсатора емкостью С = 400 пФ и катушки индуктивностью L = 10 мГн. Найти амплитуду колебаний силы тока Iт, если амплитуда колебаний напряжения Uт = 500 В.

952(942). Через какое время (в долях периода t/T) на кон­денсаторе колебательного контура впервые будет заряд, рав­ный половине амплитудного значения?

957(947). Катушку какой индуктивности надо включить в колебательный контур, чтобы при емкости конденсатора 50 пФ получить частоту свободных колебаний 10 МГц?

Колебательный контур. Период свободных колебаний.

1. После того как конденсатору колебательного контура был сообщён заряд q = 10-5 Кл, в контуре возникли затухающие колебания. Какое количество теплоты выделится в контуре к тому времени, когда колебания в нём полностью затухнут? Ёмкость конденсатора С=0,01мкФ.

2. Колебательный контур состоит из конденсатора ёмкостью 400нФ и катушки индуктивностью 9мкГн. Каков период собственных колебаний контура?

3. Какую индуктивность надо включить в колебательный контур, чтобы при ёмкости 100пФ получить период собственных колебаний 2∙ 10-6 с.

4. Сравнить жесткости пружин k1/k2 двух маятников с массами грузов соответственно 200г и 400г, если периоды их колебаний равны.

5. Под действием неподвижно висящего груза на пружине её удлинение было равно 6,4см. Затем груз оттянули и отпустили, вследствие чего он начал колебаться. Определить период этих колебаний.

6. К пружине подвесили груз, вывели его из положения равновесия и отпустили. Груз начал колебаться с периодом 0,5с. Определите удлинение пружины после прекращения колебаний. Массу пружины не учитывать.

7. За одно и то же время один математический маятник совершает 25 колебаний, а другой 15. Найти их длины, если один из них на 10см короче другого.

8. Колебательный контур состоит из конденсатора ёмкостью 10мФ и катушки индуктивности 100мГн. Найти амплитуду колебаний напряжения, если амплитуда колебаний силы тока 0,1А

9. Индуктивность катушки колебательного контура 0,5мГн. Требуется настроить этот контур на частоту 1МГц. Какова должна быть ёмкость конденсатора в этом контуре?

Экзаменационные вопросы:

1. Какое из приведенных ниже выражений определяет период свободных колебаний в колебательном контуре? А . ; Б. ; В. ; Г. ; Д. 2.

2. Какое из приведенных ниже выражений определяет циклическую частоту свободных колебаний в колебательном контуре? А. Б. В. Г. Д. 2π


3. На рисунке представлен график зависимости координаты Х тела, совершающего гармонические колебания вдоль оси ох, от времени. Чему равен период колебания тела?

А. 1 с; Б. 2 с; В. 3 с. Г. 4 с. Д. Среди ответов А-Г нет правильного.


4. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,1 м. Б. 0,2 м. В. 2 м. Г. 4 м. Д. 5 м.


5. На рисунке представлен график зависимости силы тока через катушку колебательного контура от времени. Чему равен период колебаний силы тока? А. 0,4 с. Б. 0,3 с. В. 0,2 с. Г. 0,1 с.

Д. Среди ответов А-Г нет правильного.


6. На рисунке изображён профиль волны в определённый момент времени. Чему равна её длина?

А. 0,2 м. Б. 0,4 м. В. 4 м. Г. 8 м. Д. 12 м.




7. Электрические колебания в колебательном контуре заданы уравнением q =10-2 cos 20t (Кл).

Чему равна амплитуда колебаний заряда?

А. 10-2 Кл. Б.cos 20t Кл. В.20t Кл. Г.20 Кл. Д.Среди ответов А-Г нет правильного.

8. При гармонических колебаниях вдоль оси ОХ координата тела изменяется по закону X=0,2cos(5t+). Чему равна амплитуда колебаний тела?

А. Xм; Б. 0,2 м; В. сos(5t+) м; (5t+)м; Д.м

9. Частота колебаний источника волны 0,2 с-1 скорость распространения волны 10 м/с. Чему равна, длина волны? А. 0,02 м. Б. 2 м. В. 50 м.

Г. По условию задачи нельзя определить длину волны. Д. Среди ответов А-Г нет правильного.

10. Длина волны 40 м, скорость распространения 20 м/с. Чему равна частота колебаний источника волн?

А. 0,5 с-1. Б. 2 с-1. В. 800 с-1.

Г. По условию задачи нельзя определить частоту колебания источника волн.

Д. Среди ответов А-Г нет правильного.







http://megapost.info/promo/fra/

3


Здесь представлен конспект к уроку на тему «Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Физика Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Колебательный контур. Превращения энергии в колебательном контуре

Колебательный контур. Превращения энергии в колебательном контуре

. Цикл уроков по физике по теме «Колебания». 11 класс. УРОК ПО ФИЗИКЕ № 1. 11 класс. Тема урока. :. Колебательный. . контур. ...
Колебательный контур. Превращения энергии в колебательном контуре

Колебательный контур. Превращения энергии в колебательном контуре

. УРОК ПО ФИЗИКЕ № 1. 11 класс. Тема. . урока. :. Колебательный. . контур. . . Превращения. ...
Электромагнитные колебания

Электромагнитные колебания

11 класс. Урок. . Тема :. «Электромагнитные колебания». Цель:. Продолжить формирование  умений  решения  задач. по электромагнитным колебаниям. ...
Колебательный контур

Колебательный контур

Тема:Колебательный контур. Чему равен период собственных колебаний в контуре, если его индуктивность 2,5 Гн, а емкость 1,5 мкФ? . Колебательный ...
Свободные механические колебания

Свободные механические колебания

Мальцева Людмила Анатольевна,. учитель физики,. первая квалификационная категория. муниципальное бюджетное общеобразовательное учреждение. ...
Превращение одного вида механической энергии в другой

Превращение одного вида механической энергии в другой

. Базанова Наталья Геннадьевна,. учитель физики, МБОУ СОШ № 85, г. Хабаровск. Урок. Физика. 7 класс. Тема: Превращение одного вида механической ...
Свободные и вынужденные колебания

Свободные и вынужденные колебания

ПЛАН-КОНСПЕКТ УРОКА __________________________________________. Свободные и вынужденные колебания. . ФИО (полностью). . Шалотенко Лариса ...
Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательные системы. Маятник

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательные системы. Маятник

Колебательное движение. Колебания груза на пружине. . . Свободные колебания. Колебательные системы. Маятник. . . Учитель физики МБОУ СОШ № 35 ...
Колебательное движение. Свободные колебания. Колебательные системы. Маятник

Колебательное движение. Свободные колебания. Колебательные системы. Маятник

Тема: Колебательное движение. Свободные колебания. Колебательные системы. Маятник. Образовательно – развивающие цели:. . . - сформировать ...
Закон сохранения импульса и механической энергии

Закон сохранения импульса и механической энергии

Урок физики в 9 классе. «Закон сохранения импульса и механической энергии». Подготовка к ГИА». Цели и задачи занятия:. - систематизировать знания ...
Способы изменения внутренней энергии тела

Способы изменения внутренней энергии тела

«Без сомнения, все наше знание начинается с опыта » (И.Кант, немецкий философ, 1724-1804 г.). Урок-исследование. «Способы изменения внутренней ...
Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Урок № 24 10 класс Дата______. Тема урока. : Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц ...
Механические колебания и волны. Звук

Механические колебания и волны. Звук

Урок – соревнование в 9 классе по теме :. «Механические колебания и волны. Звук.». Тип урока:. повторительно – обобщающий . Форма урока:. ...
Закон сохранения полной механической энергии

Закон сохранения полной механической энергии

Урок решения задач для 10 класса по теме. : «Закон сохранения полной механической энергии». . . Урок с применением здоровьесберегающих образовательных ...
Механические колебания

Механические колебания

Муниципальное бюджетное общеобразовательное учреждение. «Солнечная средняя общеобразовательная школа». Усть – Абаканского района Республики Хакасия. ...
Законы сохранения импульса и энергии

Законы сохранения импульса и энергии

МОУ Каргинская средняя общеобразовательная школа. Конспект урока по теме:. «Законы сохранения импульса и энергии ». ( 10 класс). ...
Исследование природных источников энергии

Исследование природных источников энергии

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 22. Курского муниципального района Ставропольского края. ...
Кинетическая энергия. Теорема об изменении кинетической энергии

Кинетическая энергия. Теорема об изменении кинетической энергии

Дата. Класс – 10. . Предмет: физика. Тема урока: Кинетическая энергия. Теорема об изменении кинетической энергии. Субкомпетенции:. . показать, ...
Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Бюджетное общеобразовательное учреждение «Лежская основная общеобразовательная школа». Конспект урока по физикев 8 ...
Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Технологическая карта урока № 18/1. ФИО автора: Кондратенко Надежда Витальевна. Должность: учитель физики и математики. Место работы: ФГКОУ ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:21 июня 2017
Категория:Физика
Поделись с друзьями:
Скачать конспект