Презентация "Теория графов" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "Теория графов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Теория графов. Соколовская Анастасия Юрьевна 6 «Б» класс
Слайд 1

Теория графов

Соколовская Анастасия Юрьевна 6 «Б» класс

Что такое теория графов? Теория графов – это раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами.
Слайд 2

Что такое теория графов?

Теория графов – это раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами.

Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проэктируемые дома, сооружения, кварталы и т.п. рассматриваются как вершины, а соединяющие их дороги, инженерные сети и т.п. – как рёбра. Применение различных вычислений, производимых на таком граф
Слайд 3

Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проэктируемые дома, сооружения, кварталы и т.п. рассматриваются как вершины, а соединяющие их дороги, инженерные сети и т.п. – как рёбра. Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут.

История возникновения теории графов. Родоначальником теории графов считается Леонард Эйлер. В1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсберских мостах, ставшей впоследствии одной из классических задач теории графов.
Слайд 4

История возникновения теории графов.

Родоначальником теории графов считается Леонард Эйлер. В1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсберских мостах, ставшей впоследствии одной из классических задач теории графов.

Изображение графов на плоскости. При изображении графов чаще всего используется следующая система обозначений: каждой вершине сопоставляется точка на плоскости, и если между вершинами существует ребро, то соответствующие точки соединяют отрезком. В случае ориентированного графа отрезки заменяют стре
Слайд 5

Изображение графов на плоскости

При изображении графов чаще всего используется следующая система обозначений: каждой вершине сопоставляется точка на плоскости, и если между вершинами существует ребро, то соответствующие точки соединяют отрезком. В случае ориентированного графа отрезки заменяют стрелками.

Неориентированный граф -. граф, вершины которого соединены ребрами. С помощью таких графов могут быть представлены схемы двухсторонних (симметричных) отношений. Граф, отражающий отношение «переписываются» между объектами класса «дети»
Слайд 6

Неориентированный граф -

граф, вершины которого соединены ребрами. С помощью таких графов могут быть представлены схемы двухсторонних (симметричных) отношений.

Граф, отражающий отношение «переписываются» между объектами класса «дети»

Ориентированный граф -. граф, вершины которого соединены дугами. С помощью таких графов могут быть представлены схемы односторонних отношений. Маша Юра Аня Витя Коля. Граф, отражающий отношение «пишет письма». Приведите примеры цепи и цикла.
Слайд 7

Ориентированный граф -

граф, вершины которого соединены дугами. С помощью таких графов могут быть представлены схемы односторонних отношений.

Маша Юра Аня Витя Коля

Граф, отражающий отношение «пишет письма».

Приведите примеры цепи и цикла.

граф, у которого вершины или рёбра (дуги) несут дополнительную информацию (вес). Москва, 1147. Переславль Залесский, 1152. Владимир, 1108 Взвешенный граф - 127
Слайд 8

граф, у которого вершины или рёбра (дуги) несут дополнительную информацию (вес).

Москва, 1147

Переславль Залесский, 1152

Владимир, 1108 Взвешенный граф - 127

Дерево – граф иерархической структуры. Между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.
Слайд 9

Дерево – граф иерархической структуры. Между любыми двумя его вершинами существует единственный путь. Дерево не содержит циклов и петель.

Задача «Подружки». У трёх подружек - Ксюши, Насти и Оли - новогодние карнавальные костюмы белого, фиолетового и синего цветов, и шапочки тех же цветов. У Насти цвет костюма и шапочки совпали, у Ксюши ни костюм, ни шапочка не были фиолетового цвета, а Оля была в белой шапочке, но цвет костюма у неё н
Слайд 10

Задача «Подружки»

У трёх подружек - Ксюши, Насти и Оли - новогодние карнавальные костюмы белого, фиолетового и синего цветов, и шапочки тех же цветов. У Насти цвет костюма и шапочки совпали, у Ксюши ни костюм, ни шапочка не были фиолетового цвета, а Оля была в белой шапочке, но цвет костюма у неё не был белым. Как были одеты девочки?

Решение: Будем изображать множество подружек, шапочек и костюмов прямоугольниками, а элементы множеств - точками, помещенными в эти прямоугольники.

1. Костюм и шапочка Насти одного цвета. 2. Костюм и шапочка Ксюши не фиолетового цвета. 3. Оля в белой шапочке. 4. Костюм у Оли не белый. подружки костюмы шапочки Ксюша Оля Настя Бел. Фиол. Син. Ксюша не в фиолетовой шапочке и не в белой, значит, в синей, а у Насти – фиолетовая шапочка. У Насти цвет
Слайд 11

1. Костюм и шапочка Насти одного цвета. 2. Костюм и шапочка Ксюши не фиолетового цвета. 3. Оля в белой шапочке. 4. Костюм у Оли не белый.

подружки костюмы шапочки Ксюша Оля Настя Бел. Фиол. Син.

Ксюша не в фиолетовой шапочке и не в белой, значит, в синей, а у Насти – фиолетовая шапочка.

У Насти цвета шапочки и костюма совпадают по условию, а у Оли – не совпадают.

Вывод: Настя в фиолетовом костюме и шапочке, Ксюша в белом костюме и синей шапочке, Оля в синем костюме и белой шапочке.

Три учительницы - Ирина Васильевна, Дарья Михайловна и Софья Петровна - преподают химию, биологию и физику в школах Ярославля, Владимира и Краснодара. Известно, что И.В. работает не в Ярославле, а Д.М. - не во Владимире; та, которая живет в Ярославле, преподает не физику; работающая во Владимире – у
Слайд 12

Три учительницы - Ирина Васильевна, Дарья Михайловна и Софья Петровна - преподают химию, биологию и физику в школах Ярославля, Владимира и Краснодара. Известно, что И.В. работает не в Ярославле, а Д.М. - не во Владимире; та, которая живет в Ярославле, преподает не физику; работающая во Владимире – учитель химии; Д.М. преподает не биологию. Кто в каком городе живет и какой предмет преподает?

Задача «Учительницы»

И.В. Д.М. С.П. Яр. Вл. Кр. хим. биол. физ. 1. И.В. работает не в Ярославле, а Д.М. - не во Владимире; та, которая живет в Ярославле, преподает не физику; 3. работающая во Владимире – учитель химии; 4. Д.М. преподает не биологию. Вывод: Д.М. не биолог и не химик, следовательно, преподает физику. Выво
Слайд 13

И.В. Д.М. С.П. Яр. Вл. Кр. хим. биол. физ.

1. И.В. работает не в Ярославле, а Д.М. - не во Владимире;

та, которая живет в Ярославле, преподает не физику;

3. работающая во Владимире – учитель химии;

4. Д.М. преподает не биологию.

Вывод: Д.М. не биолог и не химик, следовательно, преподает физику.

Вывод: в Ярославле живет учитель биологии (т.к. не физика и не химия), тогда физик - в Краснодаре.

Итак, Д.М. – физик из Краснодара, И.В. – живет во Владимире (т.к. не в Ярославле) и преподает химию, тогда С.П. – ярославна - биолог.

Теория графов и анализ художественного текста. Давайте определим, как фразы одного писателя или поэта отличаются от других. А точнее, при анализе художественного текста можно использовать математические методы. Покажем на примере творчества нескольких писателей, как на язык деревьев переводятся труд
Слайд 14

Теория графов и анализ художественного текста

Давайте определим, как фразы одного писателя или поэта отличаются от других. А точнее, при анализе художественного текста можно использовать математические методы. Покажем на примере творчества нескольких писателей, как на язык деревьев переводятся трудноуловимые, и на первый взгляд неформализуемые особенности стиля, которые кладутся в основу стилистической диагностики. Например, основная черта синтаксиса А.С. Пушкина – её ритмизованность и подчинённый ей лаконизм выражений.

Семантическая сеть
Слайд 15

Семантическая сеть

В прозаических произведениях Пушкина преобладают краткие фразы, часто встречаются нераспространенные предложения. Так если взять «Капитанскую дочку», то для неё типично расположенное дерево подчинения следующего вида: Пушкинский текст в основном состоит из предложений, в которых не более 11 слов, а
Слайд 16

В прозаических произведениях Пушкина преобладают краткие фразы, часто встречаются нераспространенные предложения. Так если взять «Капитанскую дочку», то для неё типично расположенное дерево подчинения следующего вида: Пушкинский текст в основном состоит из предложений, в которых не более 11 слов, а рисунки этих деревьев либо симметричны, либо имеют длинный правый отросток. При этом даже для длинных фраз громоздкие деревья практически не возникают. Как мы видим, интуитивное ощущение прозаичности пушкинской фразы соответствует строгому понятию синтаксической простоты.

Деревья лермонтовской прозы во многом похожи на пушкинские, хотя расчёты показывают, что в среднем предложения Лермонтова чуть-чуть длиннее и чуть-чуть сложнее. Впрочем, есть важное различие в рисунках деревьев, свойственных этим авторам. Ширина ветвления корня дерева для фразы из «Героя нашего врем
Слайд 17

Деревья лермонтовской прозы во многом похожи на пушкинские, хотя расчёты показывают, что в среднем предложения Лермонтова чуть-чуть длиннее и чуть-чуть сложнее. Впрочем, есть важное различие в рисунках деревьев, свойственных этим авторам. Ширина ветвления корня дерева для фразы из «Героя нашего времени» гораздо больше, чем для фразы из «Капитанской дочки». Это означает, что дерево лермонтовской фразы растёт вширь, в то время как в пушкинской фразе оно растёт вглубь. Большая ширина ветвления возникает вследствие того, что сказуемые в лермонтовской фразе подчиняют себе не только дополнения, но и разнообразные по структуре и значению обстоятельства.

Признаки И.Л. Севбо. А теперь выясним; по какому принципу лингвисты проводят анализ художественного текста. И.Л. Севбо привёл 7 таких признаков, мы приведём для примера 4. 1. Количество узлов дерева (т.е. количество слов во фразе). 2. Количество простых предложений в сложном (помечание стрелок, соот
Слайд 18

Признаки И.Л. Севбо

А теперь выясним; по какому принципу лингвисты проводят анализ художественного текста. И.Л. Севбо привёл 7 таких признаков, мы приведём для примера 4. 1. Количество узлов дерева (т.е. количество слов во фразе). 2. Количество простых предложений в сложном (помечание стрелок, соответствующих связям между частями сложного предложения) 3. Число уровней в дереве (длина самого длинного из путей дерева) 4. Ширина ветвления корня (число узлов подчинённых корню)

Проведём эксперимент. Перед нами строки из произведения «Кавказский пленник» А.С. Пушкина и М.Ю. Лермонтова. Нам нужно определить, какой граф принадлежит Пушкину, а какой Лермонтову. Мы это сделаем с помощью Севбо.
Слайд 19

Проведём эксперимент. Перед нами строки из произведения «Кавказский пленник» А.С. Пушкина и М.Ю. Лермонтова. Нам нужно определить, какой граф принадлежит Пушкину, а какой Лермонтову. Мы это сделаем с помощью Севбо.

Теория графов Слайд: 20
Слайд 20
Из данных таблицы ясно, что дерево на рисунке В сложнее дерева на рисунке А. Как было сказано выше, язык Лермонтова немного сложнее языка Пушкина. Следовательно, граф на рисунке А принадлежит А.С. Пушкину, а граф на рисунке В – М.Ю. Лермонтову. Как видите, с помощью графов, зная особенности стиля то
Слайд 21

Из данных таблицы ясно, что дерево на рисунке В сложнее дерева на рисунке А. Как было сказано выше, язык Лермонтова немного сложнее языка Пушкина. Следовательно, граф на рисунке А принадлежит А.С. Пушкину, а граф на рисунке В – М.Ю. Лермонтову. Как видите, с помощью графов, зная особенности стиля того или иного писателя, можно определить, кому принадлежит фраза.

выводы. Теория графов помогает решать логические задачи. С помощью теории графов можно определить автора произведения. Теория графов широко применяется в географии, истории, генеалогии.
Слайд 22

выводы

Теория графов помогает решать логические задачи. С помощью теории графов можно определить автора произведения. Теория графов широко применяется в географии, истории, генеалогии.

Список похожих презентаций

Теория графов

Теория графов

V={A,В,С,D,F,Н,P} – множество точек, E={a,b,с,d,e,f,g,h,p,l} – множество линий f: Е→ V&V, определяется по закону f: a→(H&H), b→(P&F), c→(B&C), d→(A&B), ...
Теория вероятности и статистика

Теория вероятности и статистика

Определение. Пусть А и В – два события, относящиеся к одному случайному опыту. Взяв все элементарные события, которые благоприятствуют и событию А, ...
Теория вероятности в школе

Теория вероятности в школе

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные ...
Метод графов

Метод графов

Введение. Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем ...
Теория телетрафика

Теория телетрафика

АНАЛИТИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ ТЕЛЕТРАФИКА. Андрей Андреевич Марков родился 14 июня 1856. В цикле работ, опубликованном в 1906-1912гг., заложил основы ...
Теория риска

Теория риска

Структура позиционной игры. Позиционными играми    называются игры, в которых задается последовательность принятия решений игроками в условиях меняющихся ...
Теория конечных множеств (комбинаторика)

Теория конечных множеств (комбинаторика)

Если конечное множество A состоит из m элементов, то мы будем писать: |A| = m или n(A) = m. Теорема 1 (принцип сложения). Пусть A B = . Тогда n(A ...
Теория бесконечных множеств

Теория бесконечных множеств

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, ...
Решение задач с помощью графов

Решение задач с помощью графов

Графы – «графо» (лат.) – «пишу». график биография голография. Задача. 1. Андрей 2. Борис 3. Виктор 4. Галина 5. Дмитрий 6. Елена. А Б Г Е В Д. Граф. ...
Решение комбинаторных задач с помощью графов

Решение комбинаторных задач с помощью графов

Вопросы к уроку. Чем занимается комбинаторика? Что такое граф? Какие задачи относятся к комбинаторным? Как решаются комбинаторные задачи с помощью ...
Решение задач с помощью графов

Решение задач с помощью графов

Граф. Простейшая модель системы.Отображает элементарный состав системы и структуру связей. Сеть. Граф с возможностью множества различных путей перемещения ...
Применение графов в теории вероятностей

Применение графов в теории вероятностей

Вероятностно – статистическая линия становится сегодня неотъемлемой частью школьного курса математики. Не исключено, что задачи, связанные с вычислением ...
Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине «Теория принятия решений». Призваны закрепить знания теоретических вопросов, получить практические навыки решения ...
Теория вероятности и статистика

Теория вероятности и статистика

Вероятность и статистика. Вероятностно-статистические закономерности изучает специальный раздел математики – теория вероятности. Теория вероятностей ...
Теория вероятностей

Теория вероятностей

№ 1. В кармане у Миши 4 конфеты – «Грильяж», «Маска», «Белочка», «Красная шапочка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил ...
Теория вероятности события

Теория вероятности события

Введение в комбинаторику. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать ...
Теория вероятностей в нашей жизни

Теория вероятностей в нашей жизни

Достоверные, случайные и невозможные события. Достоверное событие – событие, которое в данном опыте обязательно наступит. Случайное событие – событие, ...
Теория катастроф

Теория катастроф

Теория катастроф. Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию ...
Теория вероятностей и комбинаторные правила

Теория вероятностей и комбинаторные правила

Классическое определение вероятности. Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта ...
Теория множеств

Теория множеств

Элементы теории множеств. © Аликина Е.Б. Основу теории математики составляют понятия и отношения между этими понятиями, которые устанавливаются при ...

Конспекты

Теория вероятностей и комбинаторика в заданиях ЕГЭ

Теория вероятностей и комбинаторика в заданиях ЕГЭ

ШЕВЕЛЕВА НАДЕЖДА. МИХАЙЛОВНА. МОУ «Ягельная СОШ» Надымского района. Ямало-Ненецкого автономного округа. Учитель математики. ...
Теория вероятностей

Теория вероятностей

МБОУ «СОШ № 143» г. Красноярска,. . учитель математики Князькина Татьяна Викторовна. Теория вероятностей: подготовка к ЕГЭ 2014. Не так ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 ноября 2018
Категория:Математика
Содержит:22 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации