- Теория бесконечных множеств

Презентация "Теория бесконечных множеств" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Теория бесконечных множеств" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

ГЛАВА II ТЕОРИЯ БЕСКОНЕЧНЫХ МНОЖЕСТВ §1. Счетные множества. Примеры. Минимальность счетной мощности Определение 1. Множества А и В называются равномощными (обозначим: ), если существует биекция : А В.
Слайд 1

ГЛАВА II ТЕОРИЯ БЕСКОНЕЧНЫХ МНОЖЕСТВ §1. Счетные множества. Примеры. Минимальность счетной мощности Определение 1. Множества А и В называются равномощными (обозначим: ), если существует биекция : А В.

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, транзитивность.
Слайд 2

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, транзитивность.

Рефлексивность выполняется, так как отображение IA: A A осуществляет биекцию множества А на себя, то есть . Симметричность. Пусть , то есть существует биекция , тогда существует отображение , которое также является биекцией, то есть
Слайд 3

Рефлексивность выполняется, так как отображение IA: A A осуществляет биекцию множества А на себя, то есть . Симметричность. Пусть , то есть существует биекция , тогда существует отображение , которое также является биекцией, то есть

Транзитивность. Пусть , , то есть существуют биекции и Тогда является биекцией, причем , то есть . Транзитивность, а вместе с ней и теорема доказаны.
Слайд 4

Транзитивность. Пусть , , то есть существуют биекции и Тогда является биекцией, причем , то есть . Транзитивность, а вместе с ней и теорема доказаны.

Примеры.1) Докажем, что то есть докажем, что любые два интервала равномощны, то есть, грубо говоря, состоят из одного и того же количества точек, независимо от их длины. Рассмотрим функцию y(0) = a, y(1) = b. Так как эта функция линейна и отлична от константы, то биективно отображает (0;1) на (a, b)
Слайд 5

Примеры.1) Докажем, что то есть докажем, что любые два интервала равномощны, то есть, грубо говоря, состоят из одного и того же количества точек, независимо от их длины. Рассмотрим функцию y(0) = a, y(1) = b. Так как эта функция линейна и отлична от константы, то биективно отображает (0;1) на (a, b). Заметим, что по теореме 2 для любых открытых промежутков

2) , то есть прямая равномощна открытой полупрямой. В самом деле, отображение, определяемое функцией есть не что иное, как биекция между R и .
Слайд 6

2) , то есть прямая равномощна открытой полупрямой. В самом деле, отображение, определяемое функцией есть не что иное, как биекция между R и .

Определение 3. Множество А называется счетным, если оно равномощно множеству натуральных чисел, то есть = . Другими словами, множество А счетно, если его элементы можно занумеровать натуральными числами, то есть представить в виде: А=
Слайд 7

Определение 3. Множество А называется счетным, если оно равномощно множеству натуральных чисел, то есть = . Другими словами, множество А счетно, если его элементы можно занумеровать натуральными числами, то есть представить в виде: А=

Теорема 4. Любое подмножество счетного множества или конечно или счетно (т.е. не может содержать никаких других бесконечностей).
Слайд 8

Теорема 4. Любое подмножество счетного множества или конечно или счетно (т.е. не может содержать никаких других бесконечностей).

Доказательство. Пусть А – счетное множество и В А. Перенумеруем все элементы множества А: "Передвигаясь" в перечне элементов множества А от с меньшими номерами к элементам с большими номерами, будем выбирать из этого списка элементы подмножества В:
Слайд 9

Доказательство. Пусть А – счетное множество и В А. Перенумеруем все элементы множества А: "Передвигаясь" в перечне элементов множества А от с меньшими номерами к элементам с большими номерами, будем выбирать из этого списка элементы подмножества В:

Если какой-то элемент окажется последним в списке В, то В является конечным множеством, состоящим из к элементов: Если же для каждого элемента из В в списке А всегда найдется следующий элемент то мы получаем список (множество) который занумерован числами 1,2,3,…,k,….
Слайд 10

Если какой-то элемент окажется последним в списке В, то В является конечным множеством, состоящим из к элементов: Если же для каждого элемента из В в списке А всегда найдется следующий элемент то мы получаем список (множество) который занумерован числами 1,2,3,…,k,….

Если переобозначить то Теорема доказана.
Слайд 11

Если переобозначить то Теорема доказана.

Список похожих презентаций

Теория конечных множеств (комбинаторика)

Теория конечных множеств (комбинаторика)

Если конечное множество A состоит из m элементов, то мы будем писать: |A| = m или n(A) = m. Теорема 1 (принцип сложения). Пусть A B = . Тогда n(A ...
Теория множеств

Теория множеств

Элементы теории множеств. © Аликина Е.Б. Основу теории математики составляют понятия и отношения между этими понятиями, которые устанавливаются при ...
Теория вероятности и статистика

Теория вероятности и статистика

Определение. Пусть А и В – два события, относящиеся к одному случайному опыту. Взяв все элементарные события, которые благоприятствуют и событию А, ...
Теория вероятности в школе

Теория вероятности в школе

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные ...
Пересечение и объединение множеств

Пересечение и объединение множеств

Проверь себя. Море Берег Острова Волна Шторм Камень Океан Пляж. Игра « КОНТРПРИМЕР». Придумай предложение, которое по смыслу отрицает данное предложение:. ...
Теория случайностей

Теория случайностей

Актуальность выбора темы моей работы объясняется тем, что в настоящее время теория вероятностей пользуется всё большей популярностью – её вводят как ...
Теория катастроф

Теория катастроф

Теория катастроф. Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию ...
Теория графов

Теория графов

V={A,В,С,D,F,Н,P} – множество точек, E={a,b,с,d,e,f,g,h,p,l} – множество линий f: Е→ V&V, определяется по закону f: a→(H&H), b→(P&F), c→(B&C), d→(A&B), ...
Сравнение множеств

Сравнение множеств

. =. . 5 >. Множество круглых предметов. Множество желтых предметов. Множество съедобных предметов. 4 8. Домашнее задание стр. 11. упр. 22(г) стр. ...
Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине «Теория принятия решений». Призваны закрепить знания теоретических вопросов, получить практические навыки решения ...
Пересечения множеств

Пересечения множеств

Проверь себя: задание5 задание7. . Волшебное слово НЕ. «НЕ страна» «НЕ город». Задание № 9. Задание № 10. Игра "Что на пересечении?". Пересекаются ...
Пересечение множеств

Пересечение множеств

Витя начертил фигуры и раскрасил их синим и красным цветом. Какая фигура является их пересечением (общей частью)? Назовите элементы пересечения множеств ...
Пересечение и объединение множеств

Пересечение и объединение множеств

1.Пересечение множеств. А- множество натуральных делителей числа 24, В- множество натуральных делителей числа 16. А={1,2,3,4,6,8,12,24}, В={1,2,3,6,9,18}, ...
Пересечение и объединение множеств

Пересечение и объединение множеств

АЛГЕБРА 8 класс. «Пересечение и объединение множеств». Тема урока:. Пересечением двух множеств называют множество, состоящее из всех общих элементов ...
Теория вероятности и статистика

Теория вероятности и статистика

Вероятность и статистика. Вероятностно-статистические закономерности изучает специальный раздел математики – теория вероятности. Теория вероятностей ...
Теория вероятности события

Теория вероятности события

Введение в комбинаторику. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать ...
Теория вероятностей

Теория вероятностей

№ 1. В кармане у Миши 4 конфеты – «Грильяж», «Маска», «Белочка», «Красная шапочка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил ...
Теория графов

Теория графов

Что такое теория графов? Теория графов – это раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество ...
Теория вероятностей в нашей жизни

Теория вероятностей в нашей жизни

Достоверные, случайные и невозможные события. Достоверное событие – событие, которое в данном опыте обязательно наступит. Случайное событие – событие, ...
Теория вероятностей и комбинаторные правила

Теория вероятностей и комбинаторные правила

Классическое определение вероятности. Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта ...

Конспекты

Теория вероятностей

Теория вероятностей

МБОУ «СОШ № 143» г. Красноярска,. . учитель математики Князькина Татьяна Викторовна. Теория вероятностей: подготовка к ЕГЭ 2014. Не так ...
Теория вероятностей и комбинаторика в заданиях ЕГЭ

Теория вероятностей и комбинаторика в заданиях ЕГЭ

ШЕВЕЛЕВА НАДЕЖДА. МИХАЙЛОВНА. МОУ «Ягельная СОШ» Надымского района. Ямало-Ненецкого автономного округа. Учитель математики. ...
Объединение множеств

Объединение множеств

Муниципальное общеобразовательное учреждение. . «Средняя общеобразовательная школа № 3 г. Козьмодемьянска». Республики Марий Эл. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:19 июня 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации