Презентация "Метод графов" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36

Презентацию на тему "Метод графов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 36 слайд(ов).

Слайды презентации

«Предмет математики настолько серьезен, что нельзя упускать случая сделать его немного занимательным.» Блез Паскаль МЕТОД ГРАФОВ Проектная работа учащихся 8р класса МОУ СОШ №12
Слайд 1

«Предмет математики настолько серьезен, что нельзя упускать случая сделать его немного занимательным.» Блез Паскаль МЕТОД ГРАФОВ Проектная работа учащихся 8р класса МОУ СОШ №12

Введение. Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем в математических олимпиадах, то теория графов была особенно актуальна в нашей подготовке. Мы решили разобраться какую роль в обычной жизни играют гр
Слайд 2

Введение

Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем в математических олимпиадах, то теория графов была особенно актуальна в нашей подготовке. Мы решили разобраться какую роль в обычной жизни играют графы.

содержание

С дворянским титулом «граф» тему нашей работы связывает только общее происхождение от латинского слова «графио» - пишу. Г Р А Ф И О дальше
Слайд 3

С дворянским титулом «граф» тему нашей работы связывает только общее происхождение от латинского слова «графио» - пишу.

Г Р А Ф И О дальше

История возникновения графов. Термин "граф" впервые появился в книге венгерского математика Д. Кенига в 1936 г., хотя начальные важнейшие теоремы о графах восходят к Л. Эйлеру. Дальше
Слайд 4

История возникновения графов

Термин "граф" впервые появился в книге венгерского математика Д. Кенига в 1936 г., хотя начальные важнейшие теоремы о графах восходят к Л. Эйлеру.

Дальше

Что такое граф. Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. В процессе решения задач математики заметили, что удобно изображать объекты точками, а отношения между ними отрезками или дугами.
Слайд 5

Что такое граф

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. В процессе решения задач математики заметили, что удобно изображать объекты точками, а отношения между ними отрезками или дугами.

В математике определение графа дается так: Графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами. Рёбра графа Вершина графа
Слайд 6

В математике определение графа дается так: Графом называется конечное множество точек, некоторые из которых соединены линиями. Точки называются вершинами графа, а соединяющие линии – рёбрами.

Рёбра графа Вершина графа

В каждой вершине графа сходятся несколько линий (ребер). Если число линий четно, вершина называется четной, если нечетное число линий- нечетной. Количество рёбер, выходящих из вершины графа, называется степенью вершины. Нечётная степень Чётная степень
Слайд 7

В каждой вершине графа сходятся несколько линий (ребер). Если число линий четно, вершина называется четной, если нечетное число линий- нечетной. Количество рёбер, выходящих из вершины графа, называется степенью вершины.

Нечётная степень Чётная степень

Основы теории графов как математической науки заложил в 1736 г. Леонард Эйлер, рассматривая задачу о Кенигсбергских мостах. Сегодня эта задача стала классической.
Слайд 8

Основы теории графов как математической науки заложил в 1736 г. Леонард Эйлер, рассматривая задачу о Кенигсбергских мостах. Сегодня эта задача стала классической.

Задача о Кенигсбергских мостах. Бывший Кенигсберг (ныне Калининград) стоит на реке Преголь. Некогда там было семь мостов, которые связывали между собой и с берегами два острова. Старые мосты не сохранились, но осталась карта города, где они изображены. Жители города заметили, что они никак не могут
Слайд 9

Задача о Кенигсбергских мостах

Бывший Кенигсберг (ныне Калининград) стоит на реке Преголь. Некогда там было семь мостов, которые связывали между собой и с берегами два острова. Старые мосты не сохранились, но осталась карта города, где они изображены. Жители города заметили, что они никак не могут совершить прогулку по всем мостам, пройдя по каждому из них ровно один раз.

Так возникла задача-головоломка: «можно ли пройти все семь Кенигсбергских мостов ровно один раз и вернуться в исходное место?»
Слайд 10

Так возникла задача-головоломка: «можно ли пройти все семь Кенигсбергских мостов ровно один раз и вернуться в исходное место?»

Я здесь уже был!
Слайд 11

Я здесь уже был!

В 1735 году задача стала известна Леонарду Эйлеру, который выяснил, что пройти по Кенигсбергским мостам, соблюдая заданные условия, нельзя. Прохождение по всем мостам при условии, что нужно на каждом побывать один раз и вернуться в точку начала путешествия, на языке теории графов выглядит как задача
Слайд 12

В 1735 году задача стала известна Леонарду Эйлеру, который выяснил, что пройти по Кенигсбергским мостам, соблюдая заданные условия, нельзя. Прохождение по всем мостам при условии, что нужно на каждом побывать один раз и вернуться в точку начала путешествия, на языке теории графов выглядит как задача изображения «одним росчерком» графа.

Граф можно начертить «одним росчерком» тогда и только тогда, когда он содержит не более 2 нечетных вершин, причем маршрут начинается в одной из таких вершин и заканчивается в другой. Но, поскольку граф на этом рисунке имеет четыре нечетные вершины, то такой граф начертить «одним росчерком» невозможн
Слайд 13

Граф можно начертить «одним росчерком» тогда и только тогда, когда он содержит не более 2 нечетных вершин, причем маршрут начинается в одной из таких вершин и заканчивается в другой. Но, поскольку граф на этом рисунке имеет четыре нечетные вершины, то такой граф начертить «одним росчерком» невозможно. Граф, который можно нарисовать, не отрывая карандаша от бумаги, называется эйлеровым.

Одним росчерком. Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине.
Слайд 14

Одним росчерком

Если все вершины графа четные, то можно не отрывая карандаш от бумаги («одним росчерком»), проводя по каждому ребру только один раз, начертить этот граф. Движение можно начать с любой вершины и закончить его в той же вершине.

Применение графов. С помощью графов упрощается решение математических задач, головоломок, задач на смекалку.
Слайд 15

Применение графов

С помощью графов упрощается решение математических задач, головоломок, задач на смекалку.

Лабиринт - это граф. А исследовать его - это найти путь в этом графе.
Слайд 16

Лабиринт - это граф. А исследовать его - это найти путь в этом графе.

Использует графы и дворянство. На рисунке приведена часть генеалогического древа знаменитого дворянского рода Л. Н. Толстого. Здесь его вершины – члены этого рода, а связывающие их отрезки – отношения родственности, ведущие от родителей к детям.
Слайд 17

Использует графы и дворянство. На рисунке приведена часть генеалогического древа знаменитого дворянского рода Л. Н. Толстого. Здесь его вершины – члены этого рода, а связывающие их отрезки – отношения родственности, ведущие от родителей к детям.

Графами являются блок – схемы программ для ЭВМ.
Слайд 18

Графами являются блок – схемы программ для ЭВМ.

Графами являются сетевые графики строительства.
Слайд 19

Графами являются сетевые графики строительства.

Типичными графами на географических картах являются изображения железных дорог.
Слайд 20

Типичными графами на географических картах являются изображения железных дорог.

Типичными графами на картах города являются схемы движения городского транспорта.
Слайд 21

Типичными графами на картах города являются схемы движения городского транспорта.

Типичными графами являются схемы авиалиний, которые часто вывешиваются в аэропортах.
Слайд 22

Типичными графами являются схемы авиалиний, которые часто вывешиваются в аэропортах.

Графом является и система улиц города. Его вершины – площади и перекрестки, а ребра – улицы.
Слайд 23

Графом является и система улиц города. Его вершины – площади и перекрестки, а ребра – улицы.

Графы есть и на картах звездного неба.
Слайд 24

Графы есть и на картах звездного неба.

На рисунке изображен граф, хорошо знакомый жителям нашего города. Это схема метро: вершины - конечные станции и станции пересадок, ребра – пути, соединяющие эти станции.
Слайд 25

На рисунке изображен граф, хорошо знакомый жителям нашего города. Это схема метро: вершины - конечные станции и станции пересадок, ребра – пути, соединяющие эти станции.

Решите задачи
Слайд 26

Решите задачи

Нарисуйте граф, состоящий из четырех одноклассников: Саша и Маша Саша и Даша Маша и Гриша Гриша и Саша
Слайд 27

Нарисуйте граф, состоящий из четырех одноклассников:

Саша и Маша Саша и Даша Маша и Гриша Гриша и Саша

Решение задачи
Слайд 28

Решение задачи

Подбери к данному описанию соответствующий граф. Саша подарил подарки трём девочкам. 1 2 3 4
Слайд 29

Подбери к данному описанию соответствующий граф.

Саша подарил подарки трём девочкам.

1 2 3 4

Трое из четырех друзей сегодня говорили друг с другом по телефону.
Слайд 30

Трое из четырех друзей сегодня говорили друг с другом по телефону.

Даша идет в гости к Грише и по пути навещает 2-х своих друзей.
Слайд 31

Даша идет в гости к Грише и по пути навещает 2-х своих друзей.

Четыре друга оказались на разных островах. Саша взял лодку и забрал всех друзей на свой остров.
Слайд 32

Четыре друга оказались на разных островах. Саша взял лодку и забрал всех друзей на свой остров.

Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам: Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Венера; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс и Марс – Уран. Можно ли
Слайд 33

Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам: Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Венера; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс и Марс – Уран. Можно ли долететь на рейсовых ракетах с Земли до Марса ?

Решение. Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями. Теперь сразу видно, что долететь с Земли до Марса нельзя.
Слайд 34

Решение

Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями. Теперь сразу видно, что долететь с Земли до Марса нельзя.

На рисунке изображено несколько контуров. Какие из них можно обойти, не отрывая карандаша от бумаги, проходя каждую линию ровно один раз?
Слайд 35

На рисунке изображено несколько контуров. Какие из них можно обойти, не отрывая карандаша от бумаги, проходя каждую линию ровно один раз?

Выводы. Графы – это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи. Также можно решать различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Графы используются при составлении карт и генеалоги
Слайд 36

Выводы

Графы – это замечательные математические объекты, с помощью которых можно решать математические, экономические и логические задачи. Также можно решать различные головоломки и упрощать условия задач по физике, химии, электронике, автоматике. Графы используются при составлении карт и генеалогических древ. В математике даже есть специальный раздел, который так и называется: «Теория графов».

Список похожих презентаций

Применение графов в теории вероятностей

Применение графов в теории вероятностей

Вероятностно – статистическая линия становится сегодня неотъемлемой частью школьного курса математики. Не исключено, что задачи, связанные с вычислением ...
Решение задач с помощью графов

Решение задач с помощью графов

Граф. Простейшая модель системы.Отображает элементарный состав системы и структуру связей. Сеть. Граф с возможностью множества различных путей перемещения ...
Метод площадей при решении геометрических задач

Метод площадей при решении геометрических задач

Cодержание. Введение. В элементарной математике, самыми трудными считаются геометрические задачи. При решении геометрических задач, как правило, алгоритмов ...
Методы решений заданий С5. Метод областей в решении задач

Методы решений заданий С5. Метод областей в решении задач

(«переход» метода интервалов с прямой на плоскость). 1. Область определения 2. Граничные линии 3. Координатная плоскость 4. Знаки в областях 5.Ответ ...
Метод Мажорант и его применение

Метод Мажорант и его применение

Определение. Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ ...
Метод областей

Метод областей

Выдающийся французский математик, физик и писатель, один из создателей математического анализа, проектной геометрии, теории вероятностей, гидростатики, ...
Метод интервалов

Метод интервалов

Рассмотрим функцию f(х)=(х+3)(х-1)(х-2). D(f)- любое число, нули функции- числа -3; 1; 2. Нули функции разбивают всю область определения на промежутки: ...
Метод Варда

Метод Варда

Джо Вард. Доктор Д. Вард работал в таких направлениях, как Педагогическая психология Статистика И другие. Он был консультантом ВВС, армии и флота ...
Метод интервалов

Метод интервалов

Корни многочлена делят числовую ось на промежутки, на каждом из которых функция сохраняет свой знак без изменения - либо везде положителен, либо отрицателен. ...
Метод интервалов

Метод интервалов

Устная работа. На рисунке изображен график функции. Используя график, решите неравенство. Для каждой функции, заданной формулой, укажите ее график. ...
Метод золотого сечения

Метод золотого сечения

Золотая пропорция – гармония и красота. Выполнили учащиеся 9 класса: Ларина Екатерина, Морозов Дмитрий, Кочеткова Яна, Петрович Денис и др. Гармоничны ...
Метод Гаусса решения систем линейных уравнений

Метод Гаусса решения систем линейных уравнений

Рассмотрим систему m линейных уравнений с n неизвестными:. Назовем матрицей системы матрицу, составленную из коэффициентов при неизвестных. Матрицу, ...
Метод Гаусса и Крамера

Метод Гаусса и Крамера

Содержание. Что такое матрица? Карл Фридих Гаусс Метод Гаусса Габриэль Крамер Метод Крамера Вывод Использованные источники информации. Матрица Определение. ...
Решение комбинаторных задач с помощью графов

Решение комбинаторных задач с помощью графов

Вопросы к уроку. Чем занимается комбинаторика? Что такое граф? Какие задачи относятся к комбинаторным? Как решаются комбинаторные задачи с помощью ...
Метод интервалов решения неравенств

Метод интервалов решения неравенств

Решение неравенства. Решением неравенства с неизвестным х называют число, при подстановке которого в это неравенство вместо х получается верное числовое ...
Теория графов

Теория графов

Что такое теория графов? Теория графов – это раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество ...
Метод интервалов. Общий метод интервалов

Метод интервалов. Общий метод интервалов

Литература С.М. Никольский «Алгебра и начала анализа: Учебник для 10 класса общеобразовательных учреждений» §2 п. 2.7 – 2.9. . Определение. . . + ...
Метод координат на плоскости

Метод координат на плоскости

1. Координатная ось. Координатной осью называется прямая, на которой отмечена точка О (начало отсчета или начало координат), выбран масштаб, т.е. ...
Метод кейсов

Метод кейсов

Определение. Метод кейсов – это обучение посредством пакета ситуаций для принятия решений, то есть изучение предмета путём рассмотрения большого количества ...
Метод математической индукции

Метод математической индукции

Содержание: 1.Введение. 2.Основная часть и примеры. 3.Заключение. Введение В основе всякого математического исследования лежат дедуктивный и индуктивный ...

Конспекты

Формы представления информации. Метод координат

Формы представления информации. Метод координат

Автор:. Коджамонян Оксана Игоревна. Должность. : учитель информатики. Место работы. : МБОУ СОШ 30 посёлка Молодёжного муниципального образования ...
Метод перебора

Метод перебора

Учитель математики Епифанова Т. Н. Проблемно – диалогический урок в 5 классе. . . Тема: Метод перебора. . Учитель. Ученики. ...
Системы линейных уравнений. Метод Гаусса

Системы линейных уравнений. Метод Гаусса

ГБОУ средней общеобразовательной школы №618 г. Москвы. Конспект урока. по теме. «Системы линейных уравнений. Метод Гаусса». ...
Метод интервалов

Метод интервалов

Урок по теме "Метод интервалов ", 9-й класс. Цели:. Деятельностная цель:. формирование умений применением метода интервалов при решении простейших ...
Метод координат на плоскости. Координаты на прямой

Метод координат на плоскости. Координаты на прямой

Муниципальное бюджетное общеобразовательное учреждение. «Вечерняя сменная средняя общеобразовательная школа при ИУ». Конспект урока. Метод координат ...
Метод интервалов

Метод интервалов

Урок по теме "Метод интервалов". Цель:. Рассмотрение метода интервалов и его использование для решения квадратных неравенств, неравенств, связанных ...
Метод интервалов

Метод интервалов

Конспект урока алгебры в 10-м классе. Сизых Галины Дмитриевны. учителя математики МБОУ. «Качульская средняя. . общеобразовательная школа». ...
Метод интервалов

Метод интервалов

Филиал МОУ Петряксинская СОШ- Ново-Мочалеевская ООШ. Разработка урока. . «Метод интервалов». 8 класс. Урок разработан учителем ...
Метод введения новой переменной

Метод введения новой переменной

Алгебра 8 «б» класса. Тема урока :. Метод введения новой переменной. Образовательная. - закрепить навыки решения квадратных уравнений и заданий, ...
Метод алгебраического сложения

Метод алгебраического сложения

Тема. Метод алгебраического сложения. Данный урок – изучение нового материала (урок первичного предъявления новых знаний). Цель:. 1. Сформулировать ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Математика
Содержит:36 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации