Конспект урока «Метод интервалов» по математике для 9 класса

Урок по теме "Метод интервалов ", 9-й класс

Цели:

Деятельностная цель: формирование умений применением метода интервалов при решении простейших неравенств с кратными корнями.

Содержательная цель: расширение знаний учащихся по теме «Решение неравенств с одной переменной»

Тип урока: урок «открытия» нового знания

Ход урока:

1) организационный момент.

2) проверка домашнего задания (два человека на доске).

3) Актуализация знаний

Остальные учащиеся: повторяем алгоритм решения неравенств методом интервалов.

Решить неравенство (с проведением сравнительного анализа решения):

а)(x + 5)(x + 4)(x – 5)

б) (x – 5)(x + 4)(x + 5)2 ≤ 0.

(x – 5)(x + 4)(x + 5)2 ≤ 0 (x - 5)(x+4) ≤ 0, x = - 5;

Ответ. х € { - 5} U [- 4; 5]

Прежде всего, отметим, что если в разложении многочлена на множители входит сомножитель , то говорят, что - корень многочлена кратности .

Значит, корень х = -5 кратности 2.

Вопросы: Что вы заметили при решении данных неравенств? (не чередуются знаки на интервалах в неравенстве б)

Эта ситуация осложняет решение неравенств? (да, теперь знаки функции необходимо проверять на каждом интервале!)

А может, есть способ, все- таки не менять привычный алгоритм решения? (возможно есть)

Сформулируйте тему нашего урока:

Метод интервалов при решении неравенств с кратными корнями

Какие цели?

Научиться применять метод интервалов при решении неравенств с кратными корнями.

4)Проблемное объяснение нового знания

Итак, причина затруднения применения метода интервалов: не чередуются знаки на интервалах, что приводит к необходимости проверки знаков функции на каждом интервале.

Решим неравенство: (x – 5)(x + 4)(x + 5)2 ≤ 0 другим способом:

(x – 5)(x + 4)(x + 5)(x + 5) ≤ 0

Введем функцию f(x) = (x – 5)(x + 4)(x + 5)2; Д(f)=R.

Найдем нули функции f(x) = (x – 5)(x + 4)(x + 5)2, решив уравнение (х-5)(х+4)(х+5)2 = 0.

x = 5; x = - 4; x = - 5 и x = - 5.

- 5 – корень кратности 2 (две слившиеся точки), между ними интервал с началом и концом в точке -5. Давайте введем интервал с началом и концом в точке -5. (его длина равна 0)

Нули функции разбивают область определения на интервалы, в каждом из которых функция непрерывна и сохраняет свой знак.

Определим знак функции f (x) = (x - 5)(x + 4)(x + 5)2 при

x = 0, f (0) = (0 - 5)(0 + 4)(0 + 5)2



х



-5

-4

5



Чередуя, расставим знаки в каждом интервале, учитывая «лепесток», т.е. интервал с началом и концом в точке-5, и по рисунку запишем решение исходного неравенства.

Ответ: {-5} U [-4; 5]

Надо менять алгоритм решения неравенств методом интервалов? Определять знаки функции на каждом интервале? Как поступать с кратными корнями?

5) Закрепление

а) Работа в парах. Заполнить пропуски в карточке

При решении неравенств с кратными корнями необходимо:

1. Найти ______________ функции f(х) = (х – х1)(х – х2) … (х – хп)

2. Изобразить на ____________________________________ функции.

3. В точках, которые являются кратными корнями, дорисовать нулевые интервалы в виде ______________________.

4. Количество лепестков равно _____________.

5. Определить ____________ функции на одном из интервалов и _________________ знаки на остальных интервалах, включая ________________.

6. При этом знаки____________________ на всех интервалах.

7. Записать _________________, в соответствии с условием.

Заполнение проверить по слайду. Определить количество ошибок, расставляя знаки «+» или «- »

Проговорить алгоритм в парах с учетом допущенных ошибок.

б) Решение неравенств.

На доске два ученика решают неравенства. Остальные работают в тетрадях.

Примеры:

1. Решить неравенство: (x – 1)(3 – x)4 (x – 2) ≤ 0.

Введем функцию f(x) = (x - 1)(3 –x)4 (x – 2), Д (f) = R.

Нули функции: x =1; x =2; x =3 – корень кратности 4.

Сколько «лепестков» рисуем в точке х=3?

В точке х = 3 дорисуем 3 «лепестка».



х



2

1

3



Определим знак функции f(x) на любом промежутке, например (-∞; 1)

f(0) = (0 -1)(3 – 0) (0 -2) > 0,

и, чередуя, проставим знаки.

Ответ: [1; 2] U{3}

2. Решить неравенство: x2(x + 2)(x – 1)3 ≥ 0.

f(x) = x2(x + 2)(x – 1)3, Д(f)=R.

Нули функции: x = 0 - кратность 2,

x = -2,

x = 1 - кратность 3.





х



1

0

-2



Определим знаки функции f (x) на любом промежутке, например (-∞; -2).

f (-1) =

f (x) ≥ 0: (- ∞; 2] U {0} U [1; +∞).

Ответ: (-∞; 2] U {0} U [1; +∞).

Физкультминутка.

6) Самостоятельная работа (с взаимопроверкой в парах).

Запишите три любых числа a, b, с, причем a

(x – a)(x – b)2(x – c) ≥ 0.

7)Итоги самостоятельной работы

8)Итоги урока.

Каждый получает карточку с алгоритмом. Ее вклеить в тетрадь.

Алгоритм решения неравенств с кратными корнями

(х – х1)(х – х2)к … (х – хп)≥0

1. Найти нули функции f(х) = (х – х1)(х – х2)к … (х – хп)

2. Изобразить на координатной прямой нули функции.

3. В точках, которые являются кратными корнями, дорисовать нулевые интервалы в виде лепестков.

4. Количество лепестков равно k – 1 ( где к – это кратность корня).

5. Определить знаки функции на одном из интервалов и расставить знаки на остальных интервалах, включая «лепестки», чередуя знаки.

6. Записать ответ, в соответствии с условием.

8)Домашнее задание:

1) №390 (в, г)

2) Попытаться решить неравенство (x – 5)2(2 + x)(x + 3)3/ (x + 4)(x – 4) ≤ 0.

Здесь представлен конспект к уроку на тему «Метод интервалов», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика (9 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Решение неравенств методом интервалов

Решение неравенств методом интервалов

Тема урока:. Решение неравенств методом интервалов. Класс:. 9. . Тип урока:. урок освоения новых знаний. . Цель:. сформировать навыки решения ...
Решение неравенств методом интервалов

Решение неравенств методом интервалов

ПЛАН-КОНСПЕКТ УРОКА Решение неравенств методом интервалов. . ФИО: Метельская Т.А. . . . . Место работы : МОУ Лицей №7 г. Саяногорска. ...
Метод перебора

Метод перебора

Учитель математики Епифанова Т. Н. Проблемно – диалогический урок в 5 классе. . . Тема: Метод перебора. . Учитель. Ученики. ...
Метод алгебраического сложения

Метод алгебраического сложения

ТЕМА УРОКА: Метод алгебраического сложения. Девиз урока:. . "Деятельность - единственный путь к знанию". Дж.Бернард Шоу. . . Основная ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:21 мая 2019
Категория:Математика
Классы:
Поделись с друзьями:
Скачать конспект