- А Какую геометрию знаешь ты?

Презентация "А Какую геометрию знаешь ты?" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "А Какую геометрию знаешь ты?" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

А Какую геометрию знаешь ты? Лицей №144
Слайд 1

А Какую геометрию знаешь ты?

Лицей №144

План презентации: Краткие биографические данные Основные виды геометрии Геометрия Евклида Геометрия Лобачевского Геометрия Римана Применение Всех Видов геометрии в повседневной жизни Геометрия Лобачевского (задача) Геометрия Евклида (задача) Оценка важности разных геометрий в нашей жизни Использован
Слайд 2

План презентации: Краткие биографические данные Основные виды геометрии Геометрия Евклида Геометрия Лобачевского Геометрия Римана Применение Всех Видов геометрии в повседневной жизни Геометрия Лобачевского (задача) Геометрия Евклида (задача) Оценка важности разных геометрий в нашей жизни Использованная Литература

Мы рассмотрим три вида геометрии, создателями которых являются Евклид, Лобачевский и Риман (соответственно порядку фото слева направо)
Слайд 3

Мы рассмотрим три вида геометрии, создателями которых являются Евклид, Лобачевский и Риман (соответственно порядку фото слева направо)

Георг Фридрих Бернхард Риман (нем. Georg-Friedrich-Bernhard Riemann, 17 сентября 1826, Брезеленц, Ганновер — 20 июля 1866, Селаска, Италия, близ Лаго-Маджоре) — немецкий математик. За свою короткую жизнь (всего 10 лет трудов) он преобразовал сразу несколько разделов математики.
Слайд 4

Георг Фридрих Бернхард Риман (нем. Georg-Friedrich-Bernhard Riemann, 17 сентября 1826, Брезеленц, Ганновер — 20 июля 1866, Селаска, Италия, близ Лаго-Маджоре) — немецкий математик. За свою короткую жизнь (всего 10 лет трудов) он преобразовал сразу несколько разделов математики.

Евкли́д или Эвкли́д (ок. 300 г. до н. э.) — древнегреческий математик. Мировую известность приобрёл благодаря сочинению по основам математики «Начала». Основатель современной геометрии, преимущественно используемой в повседневной жизни.
Слайд 5

Евкли́д или Эвкли́д (ок. 300 г. до н. э.) — древнегреческий математик. Мировую известность приобрёл благодаря сочинению по основам математики «Начала». Основатель современной геометрии, преимущественно используемой в повседневной жизни.

Никола́й Ива́нович Лобаче́вский (20 ноября (1 декабря) 1792), Нижний Новгород — 12 (24) февраля 1856, Казань), русский математик, создатель неевклидовой геометрии, названной его именем, деятель университетского образования и народного просвещения. Известный английский математик Уильям Клиффорд назва
Слайд 6

Никола́й Ива́нович Лобаче́вский (20 ноября (1 декабря) 1792), Нижний Новгород — 12 (24) февраля 1856, Казань), русский математик, создатель неевклидовой геометрии, названной его именем, деятель университетского образования и народного просвещения. Известный английский математик Уильям Клиффорд назвал Лобачевского «Коперником геометрии».

Существует три вида геометрии: Геометрия Евклида Геометрия Лобачевского Геометрия Римана
Слайд 7

Существует три вида геометрии: Геометрия Евклида Геометрия Лобачевского Геометрия Римана

Геометрия Евклида Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системы аксиом, впервые изложенной в “Началах” Евклида (III века до н.э.).
Слайд 8

Геометрия Евклида Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системы аксиом, впервые изложенной в “Началах” Евклида (III века до н.э.).

Основные сведения Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. Так, к элементарной геометрии также относят преобразование инверсии, вопросы сфериче
Слайд 9

Основные сведения Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. Так, к элементарной геометрии также относят преобразование инверсии, вопросы сферической геометрии, элементы геометрических построений, теорию измерения геометрических величин и другие вопросы. Элементарную геометрию часто называют евклидовой геометрией, так как первоначальное и систематическое её изложение, хотя и недостаточно строгое, было в “Началах” Евклида. Первая строгая аксиоматика элементарной геометрии была дана Гильбертом. Элементарная геометрия изучается в средней общеобразовательной школе.

Геометрия Лобачевского (гиперболическая геометрия) Одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.
Слайд 10

Геометрия Лобачевского (гиперболическая геометрия) Одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.

Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.
Слайд 11

Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.

Геометрия Римана Одна из трёх «великих геометрий» (Евклида, Лобачевского и Римана). Если геометрия Евклида реализуется на поверхностях с постоянной нулевой гауссовской кривизной, Лобачевского — с постоянной отрицательной, то геометрия Римана — реализуется на поверхностях с постоянной положительной г
Слайд 12

Геометрия Римана Одна из трёх «великих геометрий» (Евклида, Лобачевского и Римана). Если геометрия Евклида реализуется на поверхностях с постоянной нулевой гауссовской кривизной, Лобачевского — с постоянной отрицательной, то геометрия Римана — реализуется на поверхностях с постоянной положительной гауссовской кривизной.

В геометрии Римана прямая определяется двумя точками, плоскость — тремя, две плоскости пересекаются по прямой и т. д., но через данную точку нельзя провести к прямой ни одной параллельной. В частности, в этой геометрии имеется теорема: сумма углов треугольника больше двух прямых.
Слайд 13

В геометрии Римана прямая определяется двумя точками, плоскость — тремя, две плоскости пересекаются по прямой и т. д., но через данную точку нельзя провести к прямой ни одной параллельной. В частности, в этой геометрии имеется теорема: сумма углов треугольника больше двух прямых.

Геометрия в повседневной жизни. Евклида Лобачевского Римана
Слайд 14

Геометрия в повседневной жизни

Евклида Лобачевского Римана

Применение Евклидовой геометрии в повседневной жизни. Изучается в средней общеобразовательной школе. Справедлива при описании систем и явлений, с которыми мы сталкиваемся в повседневной жизни
Слайд 15

Применение Евклидовой геометрии в повседневной жизни

Изучается в средней общеобразовательной школе. Справедлива при описании систем и явлений, с которыми мы сталкиваемся в повседневной жизни

Геометрия Евклида (задача)
Слайд 16

Геометрия Евклида (задача)

Применение геометрии Лобачевского в повседневной жизни. Геометрия Лобачевского находит применение при изучении сверх-больших (космических) пространств. Недаром сам автор назвал ее «пангеометрией», т.е. всеобщей геометрией. Идеи Лобачевского широко используются современными физиками при построении об
Слайд 17

Применение геометрии Лобачевского в повседневной жизни

Геометрия Лобачевского находит применение при изучении сверх-больших (космических) пространств. Недаром сам автор назвал ее «пангеометрией», т.е. всеобщей геометрией. Идеи Лобачевского широко используются современными физиками при построении общей геометрической картины «физического мира». Альберт Эйнштейн, например, применил их в своей теории относительности.

Геометрия Лобачевского (задача). Пусть Л-прямые a, b представлены касающимися евклидовыми полуокружностями. Показать, что существует единственная осевая симметрия, переставляющая a и b, и у a, b нет общего перпендикуляра. Решение:
Слайд 18

Геометрия Лобачевского (задача)

Пусть Л-прямые a, b представлены касающимися евклидовыми полуокружностями. Показать, что существует единственная осевая симметрия, переставляющая a и b, и у a, b нет общего перпендикуляра. Решение:

Решение. Вывод: к Л-прямым a и b нельзя провести общий перпендикуляр.
Слайд 19

Решение

Вывод: к Л-прямым a и b нельзя провести общий перпендикуляр.

Применение геометрии Римана в повседневной жизни. Геометрия Римана не имеет практического использования в повседневный, она носит лишь теоретический характер, но также является неотъемлемой частью как геометрии, так и математики в целом.
Слайд 20

Применение геометрии Римана в повседневной жизни

Геометрия Римана не имеет практического использования в повседневный, она носит лишь теоретический характер, но также является неотъемлемой частью как геометрии, так и математики в целом.

Оценка геометрий. В связи с тем ,что геометрия Римана не имеет практического применения в нашей жизни ,её очень сложно соотнести с двумя другими геометриями. В геометрии Лобачевского выполняется большинство теорем евклидовой геометрии (те, что не требуют использования аксиомы параллельности). В част
Слайд 21

Оценка геометрий

В связи с тем ,что геометрия Римана не имеет практического применения в нашей жизни ,её очень сложно соотнести с двумя другими геометриями. В геометрии Лобачевского выполняется большинство теорем евклидовой геометрии (те, что не требуют использования аксиомы параллельности). В частности, верны все три признака равенства треугольников, но к ним добавляется четвёртый, которого нет в евклидовой геометрии: Если три угла одного треугольника соответственно равны трём углам второго треугольника, то эти треугольники равны.

Список использованной литературы Геометрия 10-11 класс БЭС (Большой Энциклопедический словарь) Интернет-энциклопедия ru.wikipedia.org Интернет-портал www.yandex.ru
Слайд 22

Список использованной литературы Геометрия 10-11 класс БЭС (Большой Энциклопедический словарь) Интернет-энциклопедия ru.wikipedia.org Интернет-портал www.yandex.ru

Презентацию выполнили ученики 11 «А» класса лицея №144 Матвеев Павел и Радзевич Павел
Слайд 23

Презентацию выполнили ученики 11 «А» класса лицея №144 Матвеев Павел и Радзевич Павел

Список похожих презентаций

Алгебра и геометрия

Алгебра и геометрия

История. Женщина обучает детей геометрии. Иллюстрация из парижской рукописи Евклидовых «Начал», начало XIV века. Средние века немного дали геометрии, ...
Алгебра и геометрия

Алгебра и геометрия

Комплексные числа. ׳. Содержание. § 1. Основные понятия § 2. Геометрическое изображение комплексных чисел § 3. Формы записи комплексных чисел § 4. ...
«Скалярное произведение векторов» геометрия

«Скалярное произведение векторов» геометрия

Таблица значений для углов, равных 300, 450, 600. Заполните таблицу. Формулы приведения. sin( )= cos( )= -. Проверка д.з. № 1039 Диагонали квадрата ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Ломаная» геометрия

«Ломаная» геометрия

Найдите соответствие. Ответы. Ломаная Тема урока:. Какие из фигур являются ломаными? А Б В Г Д. Ответ А В Г. Кусок проволоки возьми И его ты перегни. ...
А, ну-ка, девочки!

А, ну-ка, девочки!

Первый конкурс. Домашнее задание. Второй конкурс. Умницы. Коды чисел. 1-а 2-б 3-з 4-й 5-к 6-л 7-м 8-н 9-о 10-п 11-р 12-ш 13-ы 14-д. Полученные слова. ...
«Конус» геометрия

«Конус» геометрия

История изучения геометрического тела конус. С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:26 апреля 2019
Категория:Математика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации