- Рентгеновская компьютерная томография

Презентация "Рентгеновская компьютерная томография" по медицине – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65
Слайд 66
Слайд 67
Слайд 68
Слайд 69
Слайд 70
Слайд 71
Слайд 72
Слайд 73
Слайд 74
Слайд 75
Слайд 76
Слайд 77
Слайд 78

Презентацию на тему "Рентгеновская компьютерная томография" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Медицина. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 78 слайд(ов).

Слайды презентации

Рентгеновская компьютерная томография
Слайд 1

Рентгеновская компьютерная томография

Содержание темы. Принципы КТ сканирования Томографическое изображение Конструкция КТ сканера «Слип ринг» и спиральная КТ
Слайд 2

Содержание темы

Принципы КТ сканирования Томографическое изображение Конструкция КТ сканера «Слип ринг» и спиральная КТ

Принципы КТ сканирования. Что такое КТ сканер? Возможности КТ Клинические приложения Конструкция КТ сканера
Слайд 3

Принципы КТ сканирования

Что такое КТ сканер? Возможности КТ Клинические приложения Конструкция КТ сканера

Что такое КТ сканер? Рентгеновский компьютерный томограф способен создавать изображения поперечных срезов через тело пациента
Слайд 4

Что такое КТ сканер?

Рентгеновский компьютерный томограф способен создавать изображения поперечных срезов через тело пациента

Что такое Что такое КТ сканер? Это гентри в форме баранки и стол, двигающий пациента
Слайд 5

Что такое Что такое КТ сканер?

Это гентри в форме баранки и стол, двигающий пациента

Возможности КТ. Способность к дифференциации внутренних структур Повышенная контрастность Окружающие структуры не снижают контраст Цифровое изображение, возможность просмотра в нескольких окнах
Слайд 6

Возможности КТ

Способность к дифференциации внутренних структур Повышенная контрастность Окружающие структуры не снижают контраст Цифровое изображение, возможность просмотра в нескольких окнах

Клинические приложения КТ. Благодаря хорошему изображению мягких тканей и костей Диагностические изображения Планирование радиотерапии 3D приложения
Слайд 7

Клинические приложения КТ

Благодаря хорошему изображению мягких тканей и костей Диагностические изображения Планирование радиотерапии 3D приложения

Клиническое применение КТ
Слайд 8

Клиническое применение КТ

Конструкция компьютерного томографа
Слайд 9

Конструкция компьютерного томографа

На практике
Слайд 10

На практике

Томографическое изображение. Принципы получения томографического изображения Сбор данных Обратные проекции Фильтрование обратных проекций
Слайд 11

Томографическое изображение

Принципы получения томографического изображения Сбор данных Обратные проекции Фильтрование обратных проекций

КТ изображение
Слайд 12

КТ изображение

Принципы томографического изображения. Использование серий двухмерных изображений объекта для обработки и представления его в 3-х мерном виде. Плоское R изображение Синограмма реконтруированное изображение
Слайд 13

Принципы томографического изображения

Использование серий двухмерных изображений объекта для обработки и представления его в 3-х мерном виде

Плоское R изображение Синограмма реконтруированное изображение

Сбор данных
Слайд 14

Сбор данных

Что мы измеряем? Измерение линейного коэффициента ослабления, μ, между трубкой и детекторами Коэффициент ослабления – это мера того, насколько быстро рентгеновские лучи поглощаются тканями
Слайд 15

Что мы измеряем?

Измерение линейного коэффициента ослабления, μ, между трубкой и детекторами Коэффициент ослабления – это мера того, насколько быстро рентгеновские лучи поглощаются тканями

Проекции. Двухмерные изображения – «проекции» всех ракурсов вокруг пациента Вращение трубки и детекторов вокруг тела пациента Данные коэффициентов ослабления собираются с каждого угла поворота трубки Генерируются серии проекций
Слайд 16

Проекции

Двухмерные изображения – «проекции» всех ракурсов вокруг пациента Вращение трубки и детекторов вокруг тела пациента Данные коэффициентов ослабления собираются с каждого угла поворота трубки Генерируются серии проекций

Обратные проекции. Обратный процесс измерения проекционных данных для реконструкции изображения Каждая проекция «считывается» обратно через реконструируемое изображение
Слайд 17

Обратные проекции

Обратный процесс измерения проекционных данных для реконструкции изображения Каждая проекция «считывается» обратно через реконструируемое изображение

Рентгеновская компьютерная томография Слайд: 18
Слайд 18
Фильтрованные обратные проекции. Обратные проекции представляют размытые аксиальные изображения Проекционные данные нуждаются в очистке перед реконструкцией Для различных диагностических целей могут применяться разные фильтры Сглаживающие фильтры для изображения мягких тканей «резкие» фильтры для из
Слайд 19

Фильтрованные обратные проекции

Обратные проекции представляют размытые аксиальные изображения Проекционные данные нуждаются в очистке перед реконструкцией Для различных диагностических целей могут применяться разные фильтры Сглаживающие фильтры для изображения мягких тканей «резкие» фильтры для изображений с высоким разрешением

Фильтр, применяемый для проекционных данных
Слайд 20

Фильтр, применяемый для проекционных данных

Рентгеновская компьютерная томография Слайд: 21
Слайд 21
Рентгеновская компьютерная томография Слайд: 22
Слайд 22
Шкала коэффициентов ослабления. Уровни серого цвета на КТ изображении представляют коэффициенты ослабления для каждого пикселя Уровни серого цвета обозначаются в единицах Хаунсфилда (HU) Вода 0 HU Воздух – 1000 HU Кость 1000-3000 HU HU= μобъекта – μводы Х 1000 μводы
Слайд 23

Шкала коэффициентов ослабления

Уровни серого цвета на КТ изображении представляют коэффициенты ослабления для каждого пикселя Уровни серого цвета обозначаются в единицах Хаунсфилда (HU) Вода 0 HU Воздух – 1000 HU Кость 1000-3000 HU HU= μобъекта – μводы Х 1000 μводы

Окна значений коэффициентов ослабления. КТ изображения могут отображаться с произвольными яркостью и контрастностью Отображение на экране определяется с использованием уровня окна (WL) и ширины окна (WW) WL определяет степень «серости» изображения WW определяет уровень от белого к черному Выбор WL и
Слайд 24

Окна значений коэффициентов ослабления

КТ изображения могут отображаться с произвольными яркостью и контрастностью Отображение на экране определяется с использованием уровня окна (WL) и ширины окна (WW) WL определяет степень «серости» изображения WW определяет уровень от белого к черному Выбор WL и WW зависит от клинических целей

Одно и тоже изображение представлено с разными уровнем и шириной окна
Слайд 25

Одно и тоже изображение представлено с разными уровнем и шириной окна

Технология КТ. Эволюция систем сканирования (1-4 поколения) Другие достижения Трубка Детекторы «слип ринг»
Слайд 26

Технология КТ

Эволюция систем сканирования (1-4 поколения) Другие достижения Трубка Детекторы «слип ринг»

КТ системы первого поколения. Один детектор Сбор данных методом «перемещение – вращение» Перемещение поперек пациента Вращение вокруг пациента Очень медленно Каждый срез – несколько минут
Слайд 27

КТ системы первого поколения

Один детектор Сбор данных методом «перемещение – вращение» Перемещение поперек пациента Вращение вокруг пациента Очень медленно Каждый срез – несколько минут

КТ системы второго поколения. Пучок излучения в виде узкого веера (100) Много детекторов Много углов сбора данных для каждой позиции Больше угол поворота Все еще требуется смещение Медленно 20 сек на срез
Слайд 28

КТ системы второго поколения

Пучок излучения в виде узкого веера (100) Много детекторов Много углов сбора данных для каждой позиции Больше угол поворота Все еще требуется смещение Медленно 20 сек на срез

Третье поколение КТ сканеров. Пучок веерный Много детекторов (500-1000) Только ротация смещение больше не требуется Намного быстрее Наибольшая скорость 0,5 сек на вращение Конструкция большинства современных сканеров
Слайд 29

Третье поколение КТ сканеров

Пучок веерный Много детекторов (500-1000) Только ротация смещение больше не требуется Намного быстрее Наибольшая скорость 0,5 сек на вращение Конструкция большинства современных сканеров

Ремоделирование данных, полученных веерным пучком. 3-е поколение КТ сканеров использует веерный пучок для сбора проекционных данных Для получения параллельных проекций данные с рядом расположенных детекторов в последующих изображениях могут комбинироваться На практике 500 -> 1000 детекторов и 500
Слайд 30

Ремоделирование данных, полученных веерным пучком

3-е поколение КТ сканеров использует веерный пучок для сбора проекционных данных Для получения параллельных проекций данные с рядом расположенных детекторов в последующих изображениях могут комбинироваться На практике 500 -> 1000 детекторов и 500 -> 1000 изображений формируют клиническую картинку

Четвертое поколение КТ сканеров. Веерный пучок Детекторы расположены неподвижно по окружности гентри Вращается только трубка Лишены проблемы кольцевидных артефактов, характерных для сканеров 3го поколения
Слайд 31

Четвертое поколение КТ сканеров

Веерный пучок Детекторы расположены неподвижно по окружности гентри Вращается только трубка Лишены проблемы кольцевидных артефактов, характерных для сканеров 3го поколения

Рентгеновское излучение. Рентгеновское излучение производится при торможении разогнанных электронов на металлическом аноде Рентгеновское излучение фильтруется для оптимизации спектра Луч формируется фильтром для придания ему соответствующих параметров Рентгеновское излучение взаимодействует с телом
Слайд 32

Рентгеновское излучение

Рентгеновское излучение производится при торможении разогнанных электронов на металлическом аноде Рентгеновское излучение фильтруется для оптимизации спектра Луч формируется фильтром для придания ему соответствующих параметров Рентгеновское излучение взаимодействует с телом пациента Рентгеновское излучение поглощается детекторами

Рентгеновская трубка
Слайд 33

Рентгеновская трубка

Достижения в устройстве рентгеновской трубки. КТ очень требовательны к рентгеновским трубкам и генераторам Пиковые значения – до 500 мА Длительное время – последовательности сканирования до 30 сек и более Требует большой теплоемкости и быстрого охлаждения До 7,5 MHU, 1,4 MHU/min Механическая прочнос
Слайд 34

Достижения в устройстве рентгеновской трубки

КТ очень требовательны к рентгеновским трубкам и генераторам Пиковые значения – до 500 мА Длительное время – последовательности сканирования до 30 сек и более Требует большой теплоемкости и быстрого охлаждения До 7,5 MHU, 1,4 MHU/min Механическая прочность из-за ротации трубки Ускорения до 13 G для 0,5 сек вращения

Фильтрация. Система фильтров в трубке задерживает низкоэнергетическое излучение, которое создает повышенную лучевую нагрузку на пациента, но не влияет на качество изображения Эквивалент 2,5 мм Алюминия Этот процесс также называется стабилизацией излучения
Слайд 35

Фильтрация

Система фильтров в трубке задерживает низкоэнергетическое излучение, которое создает повышенную лучевую нагрузку на пациента, но не влияет на качество изображения Эквивалент 2,5 мм Алюминия Этот процесс также называется стабилизацией излучения

Фильтр, формирующий луч. Фильтр, формирующий луч (бабочковидный) обеспечивает более стабильный сигнал для всех детекторов Жесткость луча на всех детекторах также более стабильна
Слайд 36

Фильтр, формирующий луч

Фильтр, формирующий луч (бабочковидный) обеспечивает более стабильный сигнал для всех детекторов Жесткость луча на всех детекторах также более стабильна

Детекторы. Первые детекторы были сцинтиляторного типа (например на основе NaCl) Низкая производительность приводила к длительным временам сканирования Ксеноновые детекторы Более высокая производительность, но эффективность еще мала Современные керамические сцинтиляторы Наилучшая производительность и
Слайд 37

Детекторы

Первые детекторы были сцинтиляторного типа (например на основе NaCl) Низкая производительность приводила к длительным временам сканирования Ксеноновые детекторы Более высокая производительность, но эффективность еще мала Современные керамические сцинтиляторы Наилучшая производительность и эффективность

Расположение детекторов. Детекторы в третьем поколении сканеров расположены в виде дуги, вращающейся вокруг пациента 600-900 элементов в банке детектора дают хорошее пространственное разрешение Трубка и детекторы вращаются вокруг пациента
Слайд 38

Расположение детекторов

Детекторы в третьем поколении сканеров расположены в виде дуги, вращающейся вокруг пациента 600-900 элементов в банке детектора дают хорошее пространственное разрешение Трубка и детекторы вращаются вокруг пациента

Ксеноновые детекторы
Слайд 39

Ксеноновые детекторы

Керамические сцинтиляторы
Слайд 40

Керамические сцинтиляторы

Вращение гентри. Кабели данных и силовые кабели в старых моделях сканеров совершали движение в режиме старт – стоп Серии изображений требовали вращения по часовой стрелке и затем против часовой стрелки для каждого следующего среза Время вращения от 1 сек и более Конструкция «слип ринг» представлена
Слайд 41

Вращение гентри

Кабели данных и силовые кабели в старых моделях сканеров совершали движение в режиме старт – стоп Серии изображений требовали вращения по часовой стрелке и затем против часовой стрелки для каждого следующего среза Время вращения от 1 сек и более Конструкция «слип ринг» представлена в 1990 г. и позволила осуществлять непрерывное вращение Питание и данные снимаются с вращающегося гентри через щетки на неподвижном кольце Не требуется вращение в режиме старт-стоп Возможно вращение со скоростью до 0,4 сек.

Система «слип ринг»
Слайд 42

Система «слип ринг»

Рентгеновская компьютерная томография Слайд: 43
Слайд 43
Спиральная КТ – сбор данных
Слайд 44

Спиральная КТ – сбор данных

Реконструкция спирального изображения. Чтобы была возможность восстановить нормальные данные Используются данные собираемые через 1800 с каждой стороны реконструируемого среза Появляются артефакты, где структура ткани меняется вдоль продольной оси
Слайд 45

Реконструкция спирального изображения

Чтобы была возможность восстановить нормальные данные Используются данные собираемые через 1800 с каждой стороны реконструируемого среза Появляются артефакты, где структура ткани меняется вдоль продольной оси

Питч при спиральной КТ. Скорость движения стола через гентри определяет расстояние между витками спирали Питч = смещение стола за оборот трубки толщина луча (среза)
Слайд 46

Питч при спиральной КТ

Скорость движения стола через гентри определяет расстояние между витками спирали Питч = смещение стола за оборот трубки толщина луча (среза)

Преимущества спирального сканирования. Скорость Нет пауз между срезами для перемещения стола Возможны питчи больше 1 Уменьшаются артефакты от движений пациента 3D Возможны разные плоскости реконструкции
Слайд 47

Преимущества спирального сканирования

Скорость Нет пауз между срезами для перемещения стола Возможны питчи больше 1 Уменьшаются артефакты от движений пациента 3D Возможны разные плоскости реконструкции

Недостатки спирального сканирования. Расширение профиля срезов Например при использовании 5 мм срезов с питчем 1, 3600 интерполяция дает срезы 6,3 мм Проблемы при использовании 1800 интерполяции в виде появления зашумленности изображения
Слайд 48

Недостатки спирального сканирования

Расширение профиля срезов Например при использовании 5 мм срезов с питчем 1, 3600 интерполяция дает срезы 6,3 мм Проблемы при использовании 1800 интерполяции в виде появления зашумленности изображения

Компьютерная томография. Сканирование – выбор протокола и режима реконструкции Производительность КТ Качество изображения Дозиметрия Будущее КТ Многосрезовые сканеры Клинические приложения
Слайд 49

Компьютерная томография

Сканирование – выбор протокола и режима реконструкции Производительность КТ Качество изображения Дозиметрия Будущее КТ Многосрезовые сканеры Клинические приложения

Параметры КТ сканирования. Параметры сбора данных Определяют получение набора данных сканирования Параметры реконструкции Определяют представление данных
Слайд 50

Параметры КТ сканирования

Параметры сбора данных Определяют получение набора данных сканирования Параметры реконструкции Определяют представление данных

Параметры сбора данных. Напряжение на трубке (80-140 кВ) Вольтаж между катодом и анодом Чем больше напряжение, больше энергия рентгеновских лучей Ток трубки (20-500 мА) Сила тока, проходящего через трубку Большие значения продуцируют больше электронов и большую интенсивность рентгеновских лучей
Слайд 51

Параметры сбора данных

Напряжение на трубке (80-140 кВ) Вольтаж между катодом и анодом Чем больше напряжение, больше энергия рентгеновских лучей Ток трубки (20-500 мА) Сила тока, проходящего через трубку Большие значения продуцируют больше электронов и большую интенсивность рентгеновских лучей

Время сканирования (0,5 – 5 сек) Время в течение которого трубка и детекторы производят полный оборот Большее время сканирования повышает лучевую нагрузку Коллимация / толщина среза (0,5 – 10 мм) Толщина среза по продольной оси Фильтрация луча Для обследования головы и тела обычно применяются различ
Слайд 52

Время сканирования (0,5 – 5 сек) Время в течение которого трубка и детекторы производят полный оборот Большее время сканирования повышает лучевую нагрузку Коллимация / толщина среза (0,5 – 10 мм) Толщина среза по продольной оси Фильтрация луча Для обследования головы и тела обычно применяются различные фильтры, формирующие луч Питч (0,5 – 2)

Параметры реконструкции. Поле зрения реконструкции (FOV) (10-50 см) Размер изображения по ширине и высоте Матрица реконструкции (обычно 512 х 512) Кернель / фильтр реконструкции Возможно применение различных фильтров от мягкого (мягкие ткани) до резкого (кость)
Слайд 53

Параметры реконструкции

Поле зрения реконструкции (FOV) (10-50 см) Размер изображения по ширине и высоте Матрица реконструкции (обычно 512 х 512) Кернель / фильтр реконструкции Возможно применение различных фильтров от мягкого (мягкие ткани) до резкого (кость)

Фильтры реконструкции. мягкий резкий
Слайд 54

Фильтры реконструкции

мягкий резкий

Производительность КТ. Параметры изображения Шум Контраст Пространственное разрешение Разрешение по продольной оси Лучевая нагрузка на пациента CTDI Локальная, органспецифическая и эффективная дозы
Слайд 55

Производительность КТ

Параметры изображения Шум Контраст Пространственное разрешение Разрешение по продольной оси Лучевая нагрузка на пациента CTDI Локальная, органспецифическая и эффективная дозы

Шум на изображении. Что такое шум на изображении? Различные значения коэффициентов ослабления на изображении однородного объекта
Слайд 56

Шум на изображении

Что такое шум на изображении? Различные значения коэффициентов ослабления на изображении однородного объекта

Шум выглядит как различные значения коэффициентов ослабления на изображении однородного объекта Является результатом процессов взаимодействия рентгеновского луча с тканями и детекторами Измеряется с использованием стандартного отклонения от коэффициента ослабления на изображении Шум очень важная хар
Слайд 57

Шум выглядит как различные значения коэффициентов ослабления на изображении однородного объекта Является результатом процессов взаимодействия рентгеновского луча с тканями и детекторами Измеряется с использованием стандартного отклонения от коэффициента ослабления на изображении Шум очень важная характеристика, когда рассматриваются низкоконтрастные изображения

Контрастность изображения. Контрастность = различие в сигнале = различие в значениях HU между объектом и окружающей тканью СТВ - СТА
Слайд 58

Контрастность изображения

Контрастность = различие в сигнале = различие в значениях HU между объектом и окружающей тканью СТВ - СТА

Когда рассматриваются объекты, у которых коэффициенты ослабления близки к фону, шум может скрыть детали
Слайд 59

Когда рассматриваются объекты, у которых коэффициенты ослабления близки к фону, шум может скрыть детали

Факторы, влияющие на шум. Шум производится от спонтанных возбуждений сигнала на детекторах Чем выше сигнал на детекторах, тем меньше шум Каждый детектор старается определить затухание сигнала Подсчетом энергии рентгеновского луча. Более сильное излучение дает более правильный подсчет затухания Керне
Слайд 60

Факторы, влияющие на шум

Шум производится от спонтанных возбуждений сигнала на детекторах Чем выше сигнал на детекторах, тем меньше шум Каждый детектор старается определить затухание сигнала Подсчетом энергии рентгеновского луча. Более сильное излучение дает более правильный подсчет затухания Кернель / фильтр реконструкции Мягкие фильтры дают меньший уровень шума, но меньше пространственное разрешение

Факторы, влияющие на сигнал в детекторах. кВ: высокий киловольтаж рентгеновских лучей обладает большей проникающей способностью мА: высокие токи на трубке создают более интенсивные рентгеновские лучи Время сканирования: дольше время сканирования => больше лучей попадает на детекторы Толщина среза
Слайд 61

Факторы, влияющие на сигнал в детекторах

кВ: высокий киловольтаж рентгеновских лучей обладает большей проникающей способностью мА: высокие токи на трубке создают более интенсивные рентгеновские лучи Время сканирования: дольше время сканирования => больше лучей попадает на детекторы Толщина среза: толще срез => больше лучей Комплекция пациента: меньше пациент, меньше ослабление

Пространственное разрешение. Возможность увидеть (различать) детали в пространстве (особенно мелкие детали) без размывания границ Возможность системы передать пространственную информацию объекта на изображении
Слайд 62

Пространственное разрешение

Возможность увидеть (различать) детали в пространстве (особенно мелкие детали) без размывания границ Возможность системы передать пространственную информацию объекта на изображении

Возможность визуализации тонких структур – особенно важно в изображении костей, ангиографии (особенно неврологии), визуализации легких и сердца
Слайд 63

Возможность визуализации тонких структур – особенно важно в изображении костей, ангиографии (особенно неврологии), визуализации легких и сердца

Методики улучшения пространственного разрешения. Смещение детекторов на ¼ Смещение центра вращения гентри, так чтобы противоположные проекции не дублировали друг друга Плавающее пятно фокуса Смещение позиции фокуса на аноде удваивает количество проекций на каждое положение
Слайд 64

Методики улучшения пространственного разрешения

Смещение детекторов на ¼ Смещение центра вращения гентри, так чтобы противоположные проекции не дублировали друг друга Плавающее пятно фокуса Смещение позиции фокуса на аноде удваивает количество проекций на каждое положение

Лучевая нагрузка. КТ – методика, дающая относительно высокую дозу лучевой нагрузки 1989, UK, обзор 2% всех исследований 20% общей луч. нагрузки на пациента 1999, UK 4% всех исследований 40% общей луч. нагрузки на пациента Необходима осторожность При направлении на КТ В методике обследования
Слайд 65

Лучевая нагрузка

КТ – методика, дающая относительно высокую дозу лучевой нагрузки 1989, UK, обзор 2% всех исследований 20% общей луч. нагрузки на пациента 1999, UK 4% всех исследований 40% общей луч. нагрузки на пациента Необходима осторожность При направлении на КТ В методике обследования

CTDI. Лучевая нагрузка при КТ четко локализована Типичная ширина луча 5-20 мм по сравнению с 250-500 мм при обычном рентгене СТDI – Computed Tomography Dose Index Измерение лучевой нагрузки в зависимости от толщины среза Измерение проводится с использованием ионизационной камеры
Слайд 66

CTDI

Лучевая нагрузка при КТ четко локализована Типичная ширина луча 5-20 мм по сравнению с 250-500 мм при обычном рентгене СТDI – Computed Tomography Dose Index Измерение лучевой нагрузки в зависимости от толщины среза Измерение проводится с использованием ионизационной камеры

Взвешенный CTDI. Взвешенный CTDI (CTDIw) – производная от средней дозы на фантоме CTDIw = 1/3CTDIgentre + 2/3CTDIperiphery Значения CTDIw на разных сканах и протоколах могут быть использованы для грубой оценки лучевой нагрузки на пациента
Слайд 67

Взвешенный CTDI

Взвешенный CTDI (CTDIw) – производная от средней дозы на фантоме CTDIw = 1/3CTDIgentre + 2/3CTDIperiphery Значения CTDIw на разных сканах и протоколах могут быть использованы для грубой оценки лучевой нагрузки на пациента

Артефакты. Полосатость Затенение Кольцевидные артефакты
Слайд 68

Артефакты

Полосатость Затенение Кольцевидные артефакты

Полосатость
Слайд 69

Полосатость

Затенение
Слайд 70

Затенение

Кольцевые артефакты
Слайд 71

Кольцевые артефакты

Многосрезовая КТ. Многосрезовые детекторы Преимущества многосрезовой КТ Клиническое применение
Слайд 72

Многосрезовая КТ

Многосрезовые детекторы Преимущества многосрезовой КТ Клиническое применение

Многосрезовые детекторы Появились в 1998 Позволяют собирать данные с нескольких срезов за один оборот трубки
Слайд 73

Многосрезовые детекторы Появились в 1998 Позволяют собирать данные с нескольких срезов за один оборот трубки

Преимущества многосрезовой КТ. Преимущества многосрезовой КТ перед односрезовой Те же данные за меньшее время Тонкие срезы дают лучшее продольное пространственное разрешение Сканирование больших объемов за то же время
Слайд 74

Преимущества многосрезовой КТ

Преимущества многосрезовой КТ перед односрезовой Те же данные за меньшее время Тонкие срезы дают лучшее продольное пространственное разрешение Сканирование больших объемов за то же время

Большие объемы сканирования
Слайд 75

Большие объемы сканирования

Клинические преимущества. Только те, которые реально лучше на многосрезовых КТ включают: Травма: больше объемы чем на односрезовом Педиатрия: быстрое сканирование – меньше седация Колоноскопия скрининг: уменьшение респираторных артефактов, более оптимальное изображение Скрининг заболеваний легких: с
Слайд 76

Клинические преимущества

Только те, которые реально лучше на многосрезовых КТ включают: Травма: больше объемы чем на односрезовом Педиатрия: быстрое сканирование – меньше седация Колоноскопия скрининг: уменьшение респираторных артефактов, более оптимальное изображение Скрининг заболеваний легких: снижение дыхательных артефактов, тоньше срезы, чем на односрезовом сканере

Ангиография: быстрое сканирование – лучшее использование контраста, хорошее продольное разрешение, изображения более тонких сосудов 3D- изображения: большое количество тонких срезов позволяет улучшить качество объемного изображения Визуализация сердца: на быстрых сканерах уменьшается размытость изоб
Слайд 77

Ангиография: быстрое сканирование – лучшее использование контраста, хорошее продольное разрешение, изображения более тонких сосудов 3D- изображения: большое количество тонких срезов позволяет улучшить качество объемного изображения Визуализация сердца: на быстрых сканерах уменьшается размытость изображения

Благодарю за внимание!
Слайд 78

Благодарю за внимание!

Список похожих презентаций

Рентгеновская компьютерная томография головного мозга

Рентгеновская компьютерная томография головного мозга

Врожденные аномалии (мальформации) головного мозга представляют собой анатомический дефект или повреждение морфологического развития мозга. Мальформации ...
Рентгеновская диагностика пороков развития лёгких у детей

Рентгеновская диагностика пороков развития лёгких у детей

Под термином "порок развития", или "аномалия развития", понимают различные отклонения от нормального строения органа, возникающие внутриутробно или ...
Рентгеновская КТ головного мозга

Рентгеновская КТ головного мозга

МЕТОДИКА КТ-ИССЛЕДОВАНИЯ ГОЛОВНОГО МОЗГА. Компьютерные томограммы головы принято подразделять на три уровня: нижний (базальный), содержащий информацию ...
Позитронно-эмиссионная томография (ПЭТ)

Позитронно-эмиссионная томография (ПЭТ)

Позитро́нно-эмиссио́нная томогра́фия, она же двухфотонная эмиссионная томография — радионуклеотидный томографический метод исследования внутренних ...
Советская медицина в годы Великой Отечественной войны

Советская медицина в годы Великой Отечественной войны

Вели́кая Оте́чественная война́ (1941—1945) — война Союза Советских Социалистических Республик против нацистской Германии и её европейских союзников ...
Персонализированная медицина

Персонализированная медицина

Еще со времен Гиппократа существует правило – фармакотерапия должна быть эффективной и безопасной. С этой целью, врач должен овладеть алгоритмом выбора ...
Лазерная медицина

Лазерная медицина

Основные направления. Терапевтический лазер Хирургический лазер Фотодинамическая терапия Лазерная диагностика. Монохроматичность. СМ = dL/L0. Степень ...
Клиническая эпидемиология и доказательная медицина

Клиническая эпидемиология и доказательная медицина

Условия, способствующие развитию медицины в конце 21 века. Новые информационные технологии Интернет, поисковые системы, полнотекстовые базы данных ...
Китайская медицина

Китайская медицина

Китайская медицина зиждется на основах, принципиально отличающихся от основ западной медицины. Они - плод долгой тысячелетней практики. Изучение китайской ...
Тибетская медицина

Тибетская медицина

средневековья до наших дней. Тибетская медицина - одна из наиболее интересных и наименее изученных систем лечения. Первые тибетские сочинения были ...
Доказательная медицина и проблемы формулярной системы

Доказательная медицина и проблемы формулярной системы

1,8. Федеральный перечень жизненно необходимых средств. Информация о наличии препаратов в аптеках города. Местный перечень льготных лекарств. 4,4. ...
Доказательная медицина - альтернатива медицине мнений

Доказательная медицина - альтернатива медицине мнений

Успехи в понимании биологии болезней … впечатляют. … Основы медицины остаются неизменными. Врачи сталкиваются с вопросами диагностики, прогноза, лечения ...
Доказательная медицина

Доказательная медицина

Доказа́тельная медици́на (англ. Evidence-based medicine — медицина, основанная на доказательствах) — подход к медицинской практике, при котором решения ...
Арктическая медицина

Арктическая медицина

НАЗНАЧЕНИЕ ТП «Медицина будущего». Формировать ответы на стратегические технологические вызовы. Сконцентрировать ресурсы исследований и разработок ...
Социальная медицина

Социальная медицина

М.Х. Шрага, профессор Поморского государственного университета, д.м.н., Факультет психологии и социальной работы, Кафедра социальной работы. Социальная ...
Тибетская медицина

Тибетская медицина

Тибетская медицина. это всеобъемлющая система врачевания, служившая народу Тибета в течение столетий. наука, искусство и философия, которая обеспечивает ...
Доказательная медицина и стандарты медицинской деятельности

Доказательная медицина и стандарты медицинской деятельности

ДМ. Метод систематического поиска и применения наилучших из доступных методов лечения и профилактики с учетом индивидуальных предпочтений пациентов. ...
Традиционная медицина Руси

Традиционная медицина Руси

Заговоры и травничество на простом уровне были доступны всякому, но более трудные заговоры, сбор целебных волшебных трав и изготовление снадобий под ...
Древний Египет и его медицина

Древний Египет и его медицина

Начало египетской медицины. Начало египетской медицины окутано легендами. Бог мудрости Тот считался автором 32 Герметических книг, 6 из которых посвящались ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2018
Категория:Медицина
Содержит:78 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации