Лист Мебиуса

Презентация на тему Лист Мебиуса


Презентацию на тему Лист Мебиуса можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд.

Слайды презентации

Слайд 1: Презентация Лист Мебиуса
Слайд 1
Лист Мёбиуса Prezentacii.com
Слайд 2: Презентация Лист Мебиуса
Слайд 2
Титульный лист

Творческая работа Коноховой Елены ученицы 8 класса МОУ «СОШ с.Петропавловка Саратовской области Дергачёвского района» Научный руководитель: Кутищева Нина Семёновна Год создания: 2009

Слайд 3: Презентация Лист Мебиуса
Слайд 3
Предисловие

Многие знают, что такое лента (лист) Мёбиуса. Тем, кто ещё не знаком с удивительным листом, который относится к «математическим неожиданностям», я предлагаю вместе со мной провести исследование и окунуться в светлое чувство познания.

Слайд 4: Презентация Лист Мебиуса
Слайд 4

Таинственный и знаменитый лист Мёбиуса (иногда говорят : лента Мёбиуса) придумал в 1858г. немецкий геометр Август Фердинанд Мёбиус (1790-1868), ученик «короля математиков» Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров Х1Х в. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых – лист Мёбиуса.

Слайд 5: Презентация Лист Мебиуса
Слайд 5

Лист Мёбиуса – один из объектов области математики под названием «топология» (по-другому – «геометрия положений»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону, – не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер. Изучением таких свойств занимается топология. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.

Слайд 6: Презентация Лист Мебиуса
Слайд 6

Рассказывают, что открыть свой «лист» Мёбиусу помогла служанка, сшившая однажды неправильно концы ленты.

Легенда
Слайд 7: Презентация Лист Мебиуса
Слайд 7

Увлекательное исследование

Запаситесь несколькими листами обычной белой бумаги, клеем и ножницами.

Слайд 8: Презентация Лист Мебиуса
Слайд 8

Берем бумажную ленту АВСD. Прикладываем ее концы АВ и СD друг к другу и склеиваем. Но не как попало, а так, чтобы точка А совпала с точкой D, а точка B с точкой С.

А В С D
Слайд 9: Презентация Лист Мебиуса
Слайд 9

Получим такое перекрученное кольцо

Слайд 10: Презентация Лист Мебиуса
Слайд 10
?

Зададимся вопросом: сколько сторон у этого куска бумаги? Две, как у любого другого? А ничего подобного. У него ОДНА сторона. Не верите? Хотите – проверьте: попробуйте закрасить это кольцо с одной стороны.

Слайд 11: Презентация Лист Мебиуса
Слайд 11

Красим, не отрываемся, на другую сторону не переходим. Красим... Закрасили? А где же вторая, чистая сторона? Нету? Ну то-то.

Слайд 12: Презентация Лист Мебиуса
Слайд 12

Теперь второй вопрос. Что будет, если разрезать обычный лист бумаги? Конечно же, два обычных листа бумаги. Точнее, две половинки листа. А что случится, если разрезать вдоль посередине это кольцо (это и есть лист Мёбиуса, или лента Мёбиуса) по всей длине? Два кольца половинной ширины? А ничего подобного. А что? Не скажу. Разрежьте сами.

Слайд 13: Презентация Лист Мебиуса
Слайд 13

А вот что получилось у меня

Лента перекручена два раза

Слайд 14: Презентация Лист Мебиуса
Слайд 14

Теперь сделайте новый лист Мёбиуса и скажите, что будет, если разрезать его вдоль, но не посередине, а ближе к одному краю? То же самое? А ничего подобного!

Слайд 15: Презентация Лист Мебиуса
Слайд 15
Слайд 16: Презентация Лист Мебиуса
Слайд 16

А если на три части? Три ленты? А ничего подобного!

Слайд 17: Презентация Лист Мебиуса
Слайд 17

Получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного.

Слайд 18: Презентация Лист Мебиуса
Слайд 18

Человечек - перевертыш. Вырежьте бумажного человечка и отправьте его вдоль пунктира, идущего посередине листа Мёбиуса.

Слайд 19: Презентация Лист Мебиуса
Слайд 19

Он вернулся к месту старта. Но в каком виде! В перевернутом! А чтобы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круголистное » путешествие. Проверьте!

Слайд 20: Презентация Лист Мебиуса
Слайд 20

Исследуйте дальше эту поразительную (и тем не менее совершенно реальную) одностороннюю поверхность, и вы получите море удовольствия. Это очень успокаивает расстроенные трудными уроками нервы, уверяю вас. Что может быть полезнее Чистого Знания?

Слайд 21: Презентация Лист Мебиуса
Слайд 21

Используемая литература: Внеклассная работа по математике В.А.Гусев, А.И.Орлов, А.Л.Розенталь. Математический цветник Ю.А.Данилова. Краткий очерк истории математики. Д. Я. Стройк. Перевод с немецкого и дополнения И.Б.ПОГРЕБЫССКОГО. Ресурсы: http://slovari.yandex.ru/dict/bse/article/00046/48100.htm http://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82_%D0%9C%D1%91%D0%B1%D0%B8%D1%83%D1%81%D0%B0 http://www.genon.ru/GetAnswer.aspx?qid=e2ab6eb5-5fb6-4fc6-b1a4-6ee7961a0dc1 www.vokrugsveta.ru http://shkolazhizni.ru/archive/0/n-13219/ http://www.univer.omsk.su/omsk/Edu/Math/mmebius.htm


Другие презентации по математике



  • Яндекс.Метрика
  • Рейтинг@Mail.ru