- РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

Презентация "РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34

Презентацию на тему "РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 34 слайд(ов).

Слайды презентации

Рациональные уравнения. Вишняков А.Ю. 2008год
Слайд 1

Рациональные уравнения

Вишняков А.Ю. 2008год

В данной презентации достаточно полно изложена теория решения различных видов рациональных уравнений, за исключением линейных и квадратных уравнений, а также общей теории решения уравнений 3-й и 4-й степеней. Нет здесь и примеров, решаемых с помощью теоремы Безу. Каждый вид уравнения сопровождается
Слайд 2

В данной презентации достаточно полно изложена теория решения различных видов рациональных уравнений, за исключением линейных и квадратных уравнений, а также общей теории решения уравнений 3-й и 4-й степеней. Нет здесь и примеров, решаемых с помощью теоремы Безу. Каждый вид уравнения сопровождается решением соответствующего примера. Данные материалы могут быть использованы частично на уроках алгебры в обычных классах, но в большей мере пригодятся для изучения этой темы в классах с углубленным изучением математики.

end
Слайд 3

end

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ Слайд: 4
Слайд 4
Способ подстановки. При решении некоторых целых рациональных уравнений есть смысл ввести новую переменную величину, обозначив некоторое рациональное выражение новой буквой. Например, в уравнении , где Р(х) – многочлен, удобно ввести новую переменную y=Р(х), решить полученное квадратное уравнение отн
Слайд 5

Способ подстановки

При решении некоторых целых рациональных уравнений есть смысл ввести новую переменную величину, обозначив некоторое рациональное выражение новой буквой. Например, в уравнении , где Р(х) – многочлен, удобно ввести новую переменную y=Р(х), решить полученное квадратное уравнение относительно y и, наконец, решить уравнение Р(х)= yо, где yо – корень уравнения

Обратно в меню Пример

Решите уравнение Решение. Введем новую переменную. Пусть Тогда получим уравнение Находим корень у = 1 и делаем обратную подстановку. Ответ: 2; 3.
Слайд 6

Решите уравнение Решение. Введем новую переменную. Пусть Тогда получим уравнение Находим корень у = 1 и делаем обратную подстановку. Ответ: 2; 3.

Распадающееся уравнение. Рациональное уравнение называется распадающимся, если его можно привести к виду , где – рациональные выражения с переменной х. Для решения воспользуемся равносильным переходом Применяемые приемы разложения на множители: - вынесение общего множителя за скобки; - способ группи
Слайд 7

Распадающееся уравнение

Рациональное уравнение называется распадающимся, если его можно привести к виду , где – рациональные выражения с переменной х. Для решения воспользуемся равносильным переходом Применяемые приемы разложения на множители: - вынесение общего множителя за скобки; - способ группировки; -формулы сокращенного умножения.

Решите уравнение Решение. Разложим левую часть уравнения на множители: Воспользуемся равносильным переходом: Ответ:-2;0;1;2.
Слайд 8

Решите уравнение Решение. Разложим левую часть уравнения на множители: Воспользуемся равносильным переходом: Ответ:-2;0;1;2.

Однородное уравнение 2-го порядка. При решении уравнения надо проверить две ситуации: 1) т.е. корнями заданного уравнения являются решения этой системы. 2) Если Q(x) ≠ 0, то после деления заданного уравнения на Q2(x) получим уравнение которое подстановкой сводится к квадратному уравнению В ответ вкл
Слайд 9

Однородное уравнение 2-го порядка

При решении уравнения надо проверить две ситуации: 1) т.е. корнями заданного уравнения являются решения этой системы. 2) Если Q(x) ≠ 0, то после деления заданного уравнения на Q2(x) получим уравнение которое подстановкой сводится к квадратному уравнению В ответ включают числа, полученные при рассмотрении обеих ситуаций.

Решить уравнение (x2 – 2х)2 – (x2 – 2х)(x2 – х – 2) – 2(x2 – х – 2)2 = 0. Решение. Возможны две ситуации. Рассмотрим первую: Найден первый корень уравнения х=2.
Слайд 10

Решить уравнение (x2 – 2х)2 – (x2 – 2х)(x2 – х – 2) – 2(x2 – х – 2)2 = 0. Решение. Возможны две ситуации. Рассмотрим первую:

Найден первый корень уравнения х=2.

Продолжение решения. Рассмотрим вторую ситуацию: разделим почленно заданное уравнение на (x2 – х – 2)2 при условии, что х ≠ -1 и х ≠ 2. Уравнение принимает вид Обозначим и решим квадратное уравнение t2 – t –2 = 0. Получаем t1= -1, t2= 2. Обратная подстановка дает уравнения откуда х = -0,5 и х = -2.
Слайд 11

Продолжение решения

Рассмотрим вторую ситуацию: разделим почленно заданное уравнение на (x2 – х – 2)2 при условии, что х ≠ -1 и х ≠ 2. Уравнение принимает вид Обозначим и решим квадратное уравнение t2 – t –2 = 0. Получаем t1= -1, t2= 2. Обратная подстановка дает уравнения откуда х = -0,5 и х = -2. С учетом обеих ситуаций получаем ответ: - 0,5; -2; 2.

Биквадратное уравнение. Уравнение имеет вид aх4+bх2+c=0. Сделаем подстановку x2 = t. Значит, x4 = t2. Получаем квадратное уравнение at2+bt+c=0. Находим значения t и, сделав обратную подстановку, находим корни исходного уравнения. Замечание. При решении биквадратного уравнения можно получить от 1 до
Слайд 12

Биквадратное уравнение

Уравнение имеет вид aх4+bх2+c=0. Сделаем подстановку x2 = t. Значит, x4 = t2. Получаем квадратное уравнение at2+bt+c=0. Находим значения t и, сделав обратную подстановку, находим корни исходного уравнения. Замечание. При решении биквадратного уравнения можно получить от 1 до 4-х корней или же это уравнение может совсем не иметь корней.

Решите уравнение х4–3х2–4=0. Решение. Сделаем подстановку x2 = t. Получаем квадратное уравнение t2–3t–4=0, корни которого t = -1 и t = 4. Обратная замена дает два уравнения x2 = -1 и x2 = 4, из которых первое уравнение не имеет корней, а корни второго уравнения -2 и 2. Ответ: -2; 2.
Слайд 13

Решите уравнение х4–3х2–4=0. Решение. Сделаем подстановку x2 = t. Получаем квадратное уравнение t2–3t–4=0, корни которого t = -1 и t = 4. Обратная замена дает два уравнения x2 = -1 и x2 = 4, из которых первое уравнение не имеет корней, а корни второго уравнения -2 и 2. Ответ: -2; 2.

Симметричное уравнение 3-го порядка. Уравнение имеет вид ах3+bх2+bх+а=0. Сгруппируем слагаемые: а(х3+1)+bх(х+1)=0. Применим формулу суммы кубов а(х+1)(х2 –х+1)+bх(х+1)=0 и выполним разложение на множители (х+1)(ах2+(b - а)х+а)=0. Получили распадающееся уравнение. Значит, х+1=0 или ах2+(b - а)х+а=0.
Слайд 14

Симметричное уравнение 3-го порядка

Уравнение имеет вид ах3+bх2+bх+а=0. Сгруппируем слагаемые: а(х3+1)+bх(х+1)=0. Применим формулу суммы кубов а(х+1)(х2 –х+1)+bх(х+1)=0 и выполним разложение на множители (х+1)(ах2+(b - а)х+а)=0. Получили распадающееся уравнение. Значит, х+1=0 или ах2+(b - а)х+а=0. Решив эти два уравнения, найдем корни исходного уравнения.

Решите уравнение 2х3–3х2– 3х +2=0. Решение. Сгруппируем слагаемые парами и в каждой паре вынесем общий множитель за скобки: 2(х3+1)–3х(х+1)=0. Применим формулу суммы кубов и вынесем общий множитель (х+1): 2(х+1)(х2 –х+1)– 3х(х+1)=0, (х+1)(2х2 –5х+2)=0. Значит, х+1=0 или 2х2 –5х+2=0. Решив эти два ур
Слайд 15

Решите уравнение 2х3–3х2– 3х +2=0. Решение. Сгруппируем слагаемые парами и в каждой паре вынесем общий множитель за скобки: 2(х3+1)–3х(х+1)=0. Применим формулу суммы кубов и вынесем общий множитель (х+1): 2(х+1)(х2 –х+1)– 3х(х+1)=0, (х+1)(2х2 –5х+2)=0. Значит, х+1=0 или 2х2 –5х+2=0. Решив эти два уравнения, найдем корни исходного уравнения: -1; 0,5; 2. Ответ: -1; 0,5; 2.

Симметричное уравнение 4-го порядка. Уравнение имеет вид ах4+bх3+сх2+bх+а=0. Сгруппируем слагаемые и разделим обе части уравнения на х2. Получаем Сделаем подстановку , тогда Получаем квадратное уравнение a(t2-2)+bt+c=0. Находим значения t и делаем обратную подстановку.
Слайд 16

Симметричное уравнение 4-го порядка

Уравнение имеет вид ах4+bх3+сх2+bх+а=0. Сгруппируем слагаемые и разделим обе части уравнения на х2. Получаем Сделаем подстановку , тогда Получаем квадратное уравнение a(t2-2)+bt+c=0. Находим значения t и делаем обратную подстановку.

Решите уравнение Решение. Разделим обе части уравнения на x2 ≠ 0 и, удобно группируя, получим равносильное уравнение: Сделаем подстановку , тогда Получаем квадратное уравнение , корни которого 2 и -3,5. Обратная подстановка дает два рациональных уравнения и откуда и находим корни исходного уравнения
Слайд 17

Решите уравнение Решение. Разделим обе части уравнения на x2 ≠ 0 и, удобно группируя, получим равносильное уравнение: Сделаем подстановку , тогда Получаем квадратное уравнение , корни которого 2 и -3,5. Обратная подстановка дает два рациональных уравнения и откуда и находим корни исходного уравнения. Ответ: 1;

Возвратное уравнение. Уравнение вида ax4 + bx3 + cx2 + dx + e = 0, где   a ≠ 0,   b ≠ 0 и , называется возвратным уравнением четвертого порядка. Это уравнение сводится к квадратному с помощью подстановки
Слайд 18

Возвратное уравнение

Уравнение вида ax4 + bx3 + cx2 + dx + e = 0, где   a ≠ 0,   b ≠ 0 и , называется возвратным уравнением четвертого порядка. Это уравнение сводится к квадратному с помощью подстановки

Решить уравнение x4 + x3 - 6x2 - 2x + 4 = 0. Решение. Заметим, что и, следовательно, данное уравнение есть возвратное уравнение четвертого порядка. Так как x = 0 не является решением уравнения, разделим на x2 и получим равносильное уравнение Обозначим , тогда и уравнение примет вид t2 + t - 2 = 0, к
Слайд 19

Решить уравнение x4 + x3 - 6x2 - 2x + 4 = 0. Решение. Заметим, что и, следовательно, данное уравнение есть возвратное уравнение четвертого порядка. Так как x = 0 не является решением уравнения, разделим на x2 и получим равносильное уравнение Обозначим , тогда и уравнение примет вид t2 + t - 2 = 0, корни которого t1 = -2 и t2 = 1. Делаем обратную замену и после умножения на x ≠ 0 получаем два квадратных уравнения x2 + 2x - 2 = 0, x2 - x - 2 = 0, откуда и получим корни исходного уравнения. Ответ:

Уравнения вида (x + a)(x + b)(x + c)(x + d) = m. Если a + b = c + d , то это уравнение сводится к квадратному уравнению. Действительно, (x + a)(x + b) = x2 + (a + b)x + ab (x + c)(x + d) = x2 + (c + d)x + cd = = x2 + (a + b)x + cd Обозначив x2 + (a + b)x = t, получим квадратное уравнение (t + ab)(t
Слайд 20

Уравнения вида (x + a)(x + b)(x + c)(x + d) = m

Если a + b = c + d , то это уравнение сводится к квадратному уравнению. Действительно, (x + a)(x + b) = x2 + (a + b)x + ab (x + c)(x + d) = x2 + (c + d)x + cd = = x2 + (a + b)x + cd Обозначив x2 + (a + b)x = t, получим квадратное уравнение (t + ab)(t + cd) = m Из этого уравнения найдем значения t и, сделав обратную подстановку, закончим решение исходного уравнения.

Решить уравнение (x - 2)(x + 1)(x + 4)(x + 7) = 19. Решение. Заметим, что -2 + 7 = 1 + 4. Удобно группируя, получим [(x - 2)(x + 7)]·[(x + 1)(x + 4)] = 19 или (x2 + 5x – 14 )(x2 + 5x + 4) = 19. Обозначим t = x2 + 5x - 14, тогда x2 + 5x + 4 = t + 18. Уравнение примет вид t(t + 18) = 19   или   t2 + 1
Слайд 21

Решить уравнение (x - 2)(x + 1)(x + 4)(x + 7) = 19. Решение. Заметим, что -2 + 7 = 1 + 4. Удобно группируя, получим [(x - 2)(x + 7)]·[(x + 1)(x + 4)] = 19 или (x2 + 5x – 14 )(x2 + 5x + 4) = 19. Обозначим t = x2 + 5x - 14, тогда x2 + 5x + 4 = t + 18. Уравнение примет вид t(t + 18) = 19   или   t2 + 18t - 19 = 0, откуда t = -19 и t = 1. Сделав обратную подстановку, получим x2 + 5x - 14 = -19 и x2 + 5x - 14 = 1. Окончательный ответ:

Уравнение вида (x + a)4 + (x + b)4 = c. Используя подстановку , уравнение можно свести к биквадратному уравнению относительно t. Действительно, подставив в уравнение , получим Обозначим и возведем каждое слагаемое в 4-ю степень. После приведения подобных получим биквадратное уравнение
Слайд 22

Уравнение вида (x + a)4 + (x + b)4 = c

Используя подстановку , уравнение можно свести к биквадратному уравнению относительно t. Действительно, подставив в уравнение , получим Обозначим и возведем каждое слагаемое в 4-ю степень. После приведения подобных получим биквадратное уравнение

Решить уравнение (x + 3)4 + (x - 1)4 = 82. Решение. Сделаем подстановку Получим следующее уравнение относительно t: (t + 2)4 + (t - 2)4 = 82 или t4 + 8t3 + 24t2 + 32t + 16 + t4 - 8t3 + 24t2 - 32t + 16 - 82 = 0. Откуда получим биквадратное уравнение t4 + 24t2 - 25 = 0, корни которого t = ± 1. Следова
Слайд 23

Решить уравнение (x + 3)4 + (x - 1)4 = 82. Решение. Сделаем подстановку Получим следующее уравнение относительно t: (t + 2)4 + (t - 2)4 = 82 или t4 + 8t3 + 24t2 + 32t + 16 + t4 - 8t3 + 24t2 - 32t + 16 - 82 = 0. Откуда получим биквадратное уравнение t4 + 24t2 - 25 = 0, корни которого t = ± 1. Следовательно, x + 1 = ± 1. Значит, корни исходного уравнения x = -2 и x = 0. Ответ: -2;0.

Уравнение вида. Решить уравнение Р(х) = 0. Для каждого корня уравнения Р(х) = 0 сделать проверку: удовлетворяет ли он условию Q(х) ≠ 0 или нет. Если да, то это — корень заданного уравнения, а если нет, то этот корень является посторонний для заданного уравнения и в ответ его включать не следует.
Слайд 24

Уравнение вида

Решить уравнение Р(х) = 0. Для каждого корня уравнения Р(х) = 0 сделать проверку: удовлетворяет ли он условию Q(х) ≠ 0 или нет. Если да, то это — корень заданного уравнения, а если нет, то этот корень является посторонний для заданного уравнения и в ответ его включать не следует.

Решите уравнение   Решение. Приравняем числитель дроби к нулю и решим полученное уравнение:    Значение х = 2 не удовлетворяет условию Следовательно, уравнение имеет один корень х= 4. Ответ: 4.
Слайд 25

Решите уравнение   Решение. Приравняем числитель дроби к нулю и решим полученное уравнение:    Значение х = 2 не удовлетворяет условию Следовательно, уравнение имеет один корень х= 4. Ответ: 4.

Подстановкой это уравнение сводится к виду Умножим на и решим полученное квадратное уравнение относительно t. Остается сделать обратную подстановку где tо - корень квадратного уравнения, и решить полученное уравнение относительно х.
Слайд 26

Подстановкой это уравнение сводится к виду Умножим на и решим полученное квадратное уравнение относительно t. Остается сделать обратную подстановку где tо - корень квадратного уравнения, и решить полученное уравнение относительно х.

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ Слайд: 27
Слайд 27
Решите уравнение   Решение. Сделаем подстановку и решим полученное уравнение относительно t :    Обратная подстановка приводит к уравнению корень которого х = -1. Ответ: -1.
Слайд 28

Решите уравнение   Решение. Сделаем подстановку и решим полученное уравнение относительно t :    Обратная подстановка приводит к уравнению корень которого х = -1. Ответ: -1.

Уравнения, состоящие из суммы двух и более дробей. 1-й способ Перенести все члены уравнения в одну часть. Привести уравнение к виду и найти корни полученного уравнения. 2-й способ Определить О.Д.З. уравнения. Умножить обе части уравнения на общий знаменатель дробей и получить целое уравнение. Найти
Слайд 29

Уравнения, состоящие из суммы двух и более дробей

1-й способ Перенести все члены уравнения в одну часть. Привести уравнение к виду и найти корни полученного уравнения. 2-й способ Определить О.Д.З. уравнения. Умножить обе части уравнения на общий знаменатель дробей и получить целое уравнение. Найти корни полученного уравнения и проверить их соответствие О.Д.З.

Решите уравнение   Решение. Найдём О.Д.З. Знаменатели дробей не могут обращаться в нуль . Значит, О.Д.З. уравнения: х ≠ 2 и х ≠ 0. Перенесём члены из правой части уравнения в левую и приведём к общему знаменателю.    . Приравняем числитель дроби к нулю: х2 – 6х + 8 = 0. Находим корни квадратного ура
Слайд 30

Решите уравнение   Решение. Найдём О.Д.З. Знаменатели дробей не могут обращаться в нуль . Значит, О.Д.З. уравнения: х ≠ 2 и х ≠ 0. Перенесём члены из правой части уравнения в левую и приведём к общему знаменателю.    . Приравняем числитель дроби к нулю: х2 – 6х + 8 = 0. Находим корни квадратного уравнения: х = 4 и х = 2. Значение х = 2 не удовлетворяет О.Д.З. Следовательно, уравнение имеет один корень х= 4. Ответ: 4.

Уравнения вида. Данное уравнение сводится к квадратному уравнению заменой переменной
Слайд 31

Уравнения вида

Данное уравнение сводится к квадратному уравнению заменой переменной

Решить уравнение Решение. О.Д.З. уравнения есть множество Поскольку x = 0 не является решением данного уравнения, перепишем уравнение в виде (разделим числитель и знаменатель каждой дроби на x). Обозначим и уравнение примет вид
Слайд 32

Решить уравнение Решение. О.Д.З. уравнения есть множество Поскольку x = 0 не является решением данного уравнения, перепишем уравнение в виде (разделим числитель и знаменатель каждой дроби на x). Обозначим и уравнение примет вид

О.Д.З. полученного уравнения t ≠ 5 и t ≠ -1. Решая это уравнение, приходим к квадратному уравнению   2t2 - 13t + 11 = 0, корни которого t1 = 1 и t2 = 11/2 удовлетворяют О.Д.З.. Делаем обратную подстановку и получаем два рациональных уравнения решив которые находим корни заданного уравнения. Ответ:
Слайд 33

О.Д.З. полученного уравнения t ≠ 5 и t ≠ -1. Решая это уравнение, приходим к квадратному уравнению   2t2 - 13t + 11 = 0, корни которого t1 = 1 и t2 = 11/2 удовлетворяют О.Д.З.. Делаем обратную подстановку и получаем два рациональных уравнения решив которые находим корни заданного уравнения. Ответ:

Литература. Алгебра и математический анализ, 10 Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд Алгебра и начала анализа. 8 – 11 кл. Пособие для школ и классов с углубл. изучением математики (серия «Дидактические материалы») Звавич Л.И., Шляпочник Л.Я., Чинкина М.В.
Слайд 34

Литература

Алгебра и математический анализ, 10 Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд Алгебра и начала анализа. 8 – 11 кл. Пособие для школ и классов с углубл. изучением математики (серия «Дидактические материалы») Звавич Л.И., Шляпочник Л.Я., Чинкина М.В.

Список похожих презентаций

УСТНОЕ РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ

УСТНОЕ РЕШЕНИЕ КВАДРАТНОГО УРАВНЕНИЯ

Цель: устные приёмы эффективного решения квадратных уравнений. Алгоритм. Извлечения квадратного корня Из натурального числа. 92 *16 =96 81 1116 1116 ...
УРАВНЕНИЯ n-ой степени

УРАВНЕНИЯ n-ой степени

24.08.2019. Большинство жизненных задач решаются как алгебраические уравнения: приведением их к самому простому виду. Толстой Л.Н. рассмотреть основные ...
РАЦИОНАЛЬНЫЕ ЧИСЛА

РАЦИОНАЛЬНЫЕ ЧИСЛА

Запишите число, противоположное данному. 18 -9 -100 19 0 -81 -18 81 -19 100 9   -0,9. Запишите числа в порядке возрастания. -12 -6 5 ответ. Сравните ...
ЛИНЕЙНЫЕ УРАВНЕНИЯ

ЛИНЕЙНЫЕ УРАВНЕНИЯ

Электронный учебник. Составила: учитель математики-информатики Терегулова И.В. МОУ «СОШ №1» 2008 год. Дорогой друг! Твоему вниманию представлен электронный ...
КВАДРАТНЫЕ УРАВНЕНИЯ

КВАДРАТНЫЕ УРАВНЕНИЯ

«Дороги не те знания, Которые откладываются в мозгу, как жир, Дороги те, которые Превращаются в Умственные мышцы» Герберт Спенсер. ФОРМУЛЫ 1. 2. 4. ...
АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ ПРОИЗВОЛЬНЫХ СТЕПЕНЕЙ

АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ ПРОИЗВОЛЬНЫХ СТЕПЕНЕЙ

1. Введение. Всякий школьник, прежде всего, умеет решать уравнение первой степени: если дано уравнение ax+b=0, где а≠0, то его единственным корнем ...

Конспекты

УРАВНЕНИЯ ПРИВОДИМЫЕ К КВАДРАТНЫМ

УРАВНЕНИЯ ПРИВОДИМЫЕ К КВАДРАТНЫМ

МУНИЦИПАЛЬНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ТУМАНОВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА МОСКАЛЕНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА ОМСКОЙ ОБЛАСТИ. Тема ...
УРАВНЕНИЯ, ПРИВОДИМЫЕ К КВАДРАТНЫМ. БИКВАДРАТНЫЕ УРАВНЕНИЯ

УРАВНЕНИЯ, ПРИВОДИМЫЕ К КВАДРАТНЫМ. БИКВАДРАТНЫЕ УРАВНЕНИЯ

Автор: Сватковская Елена Александровна,. учитель математики,. МБНОУ «Лицей № 3 (искусств)». УРАВНЕНИЯ, ПРИВОДИМЫЕ К КВАДРАТНЫМ. БИКВАДРАТНЫЕ ...
РАЦИОНАЛЬНЫЕ ЧИСЛА

РАЦИОНАЛЬНЫЕ ЧИСЛА

Муниципальное бюджетное общеобразовательное учреждение «ОСОШ № 1». Разработка урока по теме:. «РАЦИОНАЛЬНЫЕ ЧИСЛА». 8 класс. Учитель ...
УРАВНЕНИЯ

УРАВНЕНИЯ

Конспект урока математики ( 1 класс). с использованием современных интерактивных технологий. УМК « Школа России». Предметная область. Математика ...
РАЦИОНАЛЬНЫЕ ЧИСЛА

РАЦИОНАЛЬНЫЕ ЧИСЛА

1001 идея интересного занятия с детьми. . КОНСПЕКТ УРОКА АЛГЕБРЫ В 9 КЛАССЕ ПО ТЕМЕ «РАЦИОНАЛЬНЫЕ ЧИСЛА». Никифорова Марина Николаевна, ГБОУ ...
РАЦИОНАЛЬНЫЕ ЧИСЛА

РАЦИОНАЛЬНЫЕ ЧИСЛА

МБОУ Аржановская СОШ. Алексеевского района Волгоградской области. Общественный смотр знаний. по теме:. «РАЦИОНАЛЬНЫЕ ЧИСЛА». Учитель математики: ...
ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ПРОСТЕЙШИЕ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

Тема урока: «Простейшие тригонометрические уравнения». Цели:. обобщить знания учащихся о формулах корней простейших тригонометрических уравнений; ...
НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ

НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ

Филиал МБОУ «Первомайская СОШ» в с. Старокленское. тема урока:. «неполные квадратные. уравнения». Учитель математики. Умрихина Н.М. ...
ВЫРАЖЕНИЯ, ТОЖДЕСТВА, УРАВНЕНИЯ

ВЫРАЖЕНИЯ, ТОЖДЕСТВА, УРАВНЕНИЯ

ВЫРАЖЕНИЯ, ТОЖДЕСТВА, УРАВНЕНИЯ. Урок 1. ЧИСЛОВЫЕ ВЫРАЖЕНИЯ, ПОРЯДОК ДЕЙСТВИЙ В НИХ, ИСПОЛЬЗОВАНИЕ СКОБОК. Цели. : ввести понятия числового выражения, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 января 2013
Категория:Математика
Автор презентации:Вишняков А.Ю.
Содержит:34 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации