- КРАТНЫЕ И ДВОЙНЫЕ ИНТЕГРАЛЫ

Презентация "КРАТНЫЕ И ДВОЙНЫЕ ИНТЕГРАЛЫ" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13

Презентацию на тему "КРАТНЫЕ И ДВОЙНЫЕ ИНТЕГРАЛЫ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 13 слайд(ов).

Слайды презентации

Кратные интегралы. Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.
Слайд 1

Кратные интегралы

Как известно, интегрирование является процессом суммирования. Однако суммирование может производится неоднократно, что приводит нас к понятию кратных интегралов. Рассмотрение этого вопроса начнем с рассмотрения двойных интегралов.

Двойные интегралы. Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой f(x, y) = 0. Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью . Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой обл
Слайд 2

Двойные интегралы.

Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой f(x, y) = 0. Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью . Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область . С геометрической точки зрения  - площадь фигуры, ограниченной контуром.

Разобьем область  на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние , а по оси у – на . Вообще говоря, такой порядок разбиения необязателен, возможно разбиение области на частичные участки произвольной формы и размера. Получаем, что площадь S делится на элементар
Слайд 3

Разобьем область  на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние , а по оси у – на . Вообще говоря, такой порядок разбиения необязателен, возможно разбиение области на частичные участки произвольной формы и размера. Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны В каждой частичной области возьмем произвольную точку и составим интегральную сумму где f – функция непрерывная и однозначная для всех точек области . Если бесконечно увеличивать количество частичных областей i, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.

Определение. Если при стремлении к нулю шага разбиения области  интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области . учетом того, что получаем: В приведенной выше записи имеются два знака , т.к. суммирование производится по двум пе
Слайд 4

Определение

Если при стремлении к нулю шага разбиения области  интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области . учетом того, что получаем: В приведенной выше записи имеются два знака , т.к. суммирование производится по двум переменным х и у. Т.к. деление области интегрирования произвольно, также произволен и выбор точек , то, считая все площади одинаковыми, получаем формулу:

Условия существования двойного интеграла. Сформулируем достаточные условия существования двойного интеграла Теорема. Если функция f(x, y) непрерывна в замкнутой области , то двойной интеграл существует.
Слайд 5

Условия существования двойного интеграла

Сформулируем достаточные условия существования двойного интеграла Теорема. Если функция f(x, y) непрерывна в замкнутой области , то двойной интеграл существует.

Теорема. Если функция f(x, y) ограничена в замкнутой области  и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.
Слайд 6

Теорема

Если функция f(x, y) ограничена в замкнутой области  и непрерывна в ней всюду, кроме конечного числа кусочно – гладких линий, то двойной интеграл существует.

Свойства двойного интеграла. 1) 2) 3) Если  = 1 + 2, то 4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования. 5) Если f(x, y)  0 в области , то 6) Если f1(x, y)  f2(x, y), т
Слайд 7

Свойства двойного интеграла.

1) 2) 3) Если  = 1 + 2, то 4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования. 5) Если f(x, y)  0 в области , то 6) Если f1(x, y)  f2(x, y), то 7)

Вычисление двойного интеграла. Теорема Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a
Слайд 8

Вычисление двойного интеграла

Теорема Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a

Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c
Слайд 9

Теорема.

Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c

Замена переменных в двойном интеграле. Расмотрим двойной интеграл вида , где переменная изменяется в пределах от a до b, а переменная – от до Положим Тогда. ; ; dy =
Слайд 10

Замена переменных в двойном интеграле

Расмотрим двойной интеграл вида , где переменная изменяется в пределах от a до b, а переменная – от до Положим Тогда

; ; dy =

т.к. при первом интегрировании переменная принимается за постоянную, то подставляя это выражение в записанное выше соотношение для , получаем:
Слайд 11

т.к. при первом интегрировании переменная принимается за постоянную, то подставляя это выражение в записанное выше соотношение для , получаем:

Выражение называется определителем Якоби или Якобианом функций и (Якоби Карл Густав Якоб – (1804-1851) – немецкий математик) Тогда Т.к. при первом интегрировании приведенное выше выражение для принимает вид ( при первом интегрировании полагаем ), то при изменении порядка интегрирования, получаем соо
Слайд 12

Выражение называется определителем Якоби или Якобианом функций и (Якоби Карл Густав Якоб – (1804-1851) – немецкий математик) Тогда Т.к. при первом интегрировании приведенное выше выражение для принимает вид ( при первом интегрировании полагаем ), то при изменении порядка интегрирования, получаем соотношение:

Двойной интеграл в полярных координатах. Воспользуемся формулой замены переменных: При этом известно, что В этом случае Якобиан имеет вид: Тогда Здесь  - новая область значений,
Слайд 13

Двойной интеграл в полярных координатах.

Воспользуемся формулой замены переменных: При этом известно, что В этом случае Якобиан имеет вид: Тогда Здесь  - новая область значений,

Конспекты

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

1001 идея интересного занятия с детьми. . РАЗРАБОТКА УРОКА ПО ТЕМЕ «АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА». Евграшина Наталья ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

Муниципальное бюджетное общеобразовательное учреждение. Наро-Фоминская средняя общеобразовательная школа №5. с углубленным изучением отдельных ...
АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

МОУ –лицей № 90. начальная школа. «АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. . . УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ». (конспект урока ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

УРОК В 9 КЛАССЕ ПО ТЕМЕ. «АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ» (2ч). Цели урока:. . 1). образовательная. : рассмотрение задач на применение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:6 января 2013
Категория:Математика
Содержит:13 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации