» » » Тригонометрия

Презентация на тему Тригонометрия

Презентацию на тему Тригонометрия можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайдов.

скачать презентацию

Слайды презентации

Слайд 1: Презентация Тригонометрия
Слайд 1
Тригонометрия.
Слайд 2: Презентация Тригонометрия
Слайд 2

Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) — раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса (1561—1613), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.

Слайд 3: Презентация Тригонометрия
Слайд 3

Разделы тригонометрии.

Тригонометрия делится на плоскую, или прямолинейную, и сферическую тригонометрию. Теория тригонометрических функций (гониометрия) и её приложения к решению плоских прямоугольных и косоугольных треугольников изучаются в средней школе

Слайд 4: Презентация Тригонометрия
Слайд 4

Основные формулы плоской тригонометрии

Пусть а, b, с — стороны треугольника, А, В, С — противолежащие им углы (А+В+С = p), ha, hb, hc — высоты, 2p — периметр, S — площадь, 2R — диаметр окружности, описанной около треугольника.

Слайд 5: Презентация Тригонометрия
Слайд 5
Теорема синусов:
Слайд 6: Презентация Тригонометрия
Слайд 6

теорема косинусов: a2 = b2 + c2 — 2bc cos A,

Теорема косинусов:

Слайд 7: Презентация Тригонометрия
Слайд 7

Теорема тангенсов:

Слайд 8: Презентация Тригонометрия
Слайд 8

Площадь треугольника:

Слайд 9: Презентация Тригонометрия
Слайд 9

Углы треугольника, если известны стороны, могут быть найдены по теореме косинусов или по формулам вида:

Слайд 10: Презентация Тригонометрия
Слайд 10
История создания.

Для компенсации отсутствия таблицы хорд математики времен Аристарха иногда использовали хорошо известную теорему, в современной записи — sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, совместно с другими теоремами.

Слайд 11: Презентация Тригонометрия
Слайд 11

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180—125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд.

Слайд 12: Презентация Тригонометрия
Слайд 12

Менелай Александрийский (100 н. э.) написал «Сферику» в трёх книгах. В первой книге он представил основы для сферических треугольников. Вторая книга «Сферики» применяет сферическую геометрию к астрономии. Третья книга содержит «теорему Менелая», известную также как «правило шести величин».

Слайд 13: Презентация Тригонометрия
Слайд 13

Теорема Птолемея, которая говорит о том, что сумма произведений противоположных сторон выпуклого вписанного четырёхугольника равна произведению диагоналей, влечёт за собой эквивалентность четырёх формул суммы и разности для синуса и косинуса. Позднее Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, хотя, возможно, эти таблицы были выведены из работ Гиппарха.

Слайд 14: Презентация Тригонометрия
Слайд 14

Плоская тригонометрия начала развиваться позже сферической, хотя отдельные теоремы её встречались и раньше. Например, 12-я и 13-я теоремы второй книги "Начал" Евклида (3 в. дон. э.) выражают по существу теорему косинусов. Плоская тригонометрия получила развитие у аль-Баттани (2-я половина 9 — начало 10 вв.), Абу-ль-Вефа (10 в.), Бхаскара (12 в.) и Насирэддина Туси (13 в.), которым была уже известна теорема синусов. Теорема тангенсов была получена Региомонтаном (15 в.). Дальнейшие работы в области Т. принадлежат Н. Копернику (1-я половина 16 в.), Т. Браге (2-я половина 16 в.), Ф. Виету (16 в.), И. Кеплеру (конец 16 — 1-я половина 17 вв.). Современный вид тригонометрия получила в работах Л. Эйлера (18 в.).

Слайд 15: Презентация Тригонометрия
Слайд 15

Другие источники сообщают, что именно замена хорд синусами стала главным достижением Средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах. Индийские учёные пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражаются как sin2α + cos2α = 1 sin α = cos(90 – α) sin(α ± β) = sinα cosβ ± sinβ cosα Индийцы также знали формулы для кратных углов sinn, cosn, где n = 2,3,4,5.

Слайд 16: Презентация Тригонометрия
Слайд 16

Тригонометрические функции угла θ внутри единичной окружности

Синус — отношение противолежащего катета к гипотенузе. Косинус — отношение прилежащего катета к гипотенузе. Тангенс — отношение противолежащего катета к прилежащему. Котангенс — отношение прилежащего катета к противолежащему. Секанс — отношение гипотенузы к прилежащему катету. Косеканс — отношение гипотенузы к противолежащему катету.

Слайд 17: Презентация Тригонометрия
Слайд 17

Данные определения позволяют вычислить значения функций для острых углов, то есть от 0° до 90° (от 0 до радиан). В XVIII веке Леонард Эйлер дал современные, более общие определения, расширив область определения этих функций на всю числовую ось. Рассмотрим в прямоугольной системе координат окружность единичного радиуса (см. рисунок) и отложим от горизонтальной оси угол θ (если величина угла положительна, то откладываем против часовой стрелки, иначе по часовой стрелке). Точку пересечения построенной стороны угла с окружностью обозначим A. Тогда: Синус угла θ определяется как ордината точки A. Косинус — абсцисса точки A. Тангенс — отношение синуса к косинусу. Котангенс — отношение косинуса к синусу (то есть величина, обратная тангенсу). Секанс — величина, обратная косинусу. Косеканс — величина, обратная синусу. Для острых углов новые определения совпадают с прежними.

Слайд 18: Презентация Тригонометрия
Слайд 18
Применение

Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.

Слайд 19: Презентация Тригонометрия
Слайд 19

Спасибо за внимание!!!

Работу выполнила ученица 11а класса Мокрушина Марина

  • Яндекс.Метрика
  • Рейтинг@Mail.ru