- ЛОГАРИФМЫ И ИХ СВОЙСТВА

Презентация "ЛОГАРИФМЫ И ИХ СВОЙСТВА" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "ЛОГАРИФМЫ И ИХ СВОЙСТВА" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Л О Г А Р И Ф М Ы И И Х С В О Й С Т В А . Возведение в степень имеет два обратных действия. Если. а х = b, то отыскание a есть одно обратное действие – извлечение корня; нахождение же b – другое, л о г а р и ф м и р о в а н и е. Для чего были придуманы логарифмы ? Конечно, для ускорения и упрощения
Слайд 1

Л О Г А Р И Ф М Ы И И Х С В О Й С Т В А .

Возведение в степень имеет два обратных действия. Если

а х = b,

то отыскание a есть одно обратное действие – извлечение корня; нахождение же b – другое,

л о г а р и ф м и р о в а н и е.

Для чего были придуманы логарифмы ?

Конечно, для ускорения и упрощения вычислений.

Изобретатель первых логарифмических таблиц, Непер, так говорил о своих побуждениях: «Я старался, насколько мог и умел, отделаться от трудности и скуки вычислений, докучность которых обычно отпугивает весьма многих от изучения математики». Современник Непера, Бригг, прославившийся позднее изобретение
Слайд 2

Изобретатель первых логарифмических таблиц, Непер, так говорил о своих побуждениях:

«Я старался, насколько мог и умел, отделаться от трудности и скуки вычислений, докучность которых обычно отпугивает весьма многих от изучения математики».

Современник Непера, Бригг, прославившийся позднее изобретением десятичных логарифмов, писал, получив сочинение Непера:

«Своими новыми и удивительными логарифмами Непер заставил меня усиленно работать и головой и руками. Я надеюсь увидеть его летом, так как никогда не читал книги, которая нравилась бы мне больше и приводила бы в большее изумление».

Бригг осуществил свое намерение и направился в Шотландию, чтобы посетить изобретателя логарифмов. При встрече Бригг сказал: «Милорд, я предпринял это долгое путешествие только для того, чтобы видеть Вашу особу и узнать, с помощью какого инструмента разума и изобретательности Вы пришли впервые к мысл
Слайд 3

Бригг осуществил свое намерение и направился в Шотландию, чтобы посетить изобретателя логарифмов. При встрече Бригг сказал:

«Милорд, я предпринял это долгое путешествие только для того, чтобы видеть Вашу особу и узнать, с помощью какого инструмента разума и изобретательности Вы пришли впервые к мысли об этом превосходном пособии для астрономов, а именно – логарифмах; но, милорд, после того, как Вы нашли их, я удивляюсь, почему никто не нашел их раньше, настолько легкими они кажутся после того, как о них узнаёшь».

Великий математик говорил об астрономах, так как им приходится делать особенно сложные и утомительные вычисления. Но слова его с полным правом могут быть отнесены ко всем вообще, кому приходится иметь дело с числовыми выкладками.

О П Р Е Д Е Л Е Н И Е. Логарифмом числа b по основанию a называется показатель степени, в которую нужно возвести основание a, чтобы получить b (где а> 0, а≠1). Вспомните уравнение из первого слайда: а х = b Мы оговорили, что нахождение b – логарифмирование. Математики договорились записывать это
Слайд 4

О П Р Е Д Е Л Е Н И Е.

Логарифмом числа b по основанию a называется показатель степени, в которую нужно возвести основание a, чтобы получить b (где а> 0, а≠1).

Вспомните уравнение из первого слайда: а х = b Мы оговорили, что нахождение b – логарифмирование. Математики договорились записывать это так:

Log a b = x

(читается: «логарифм b по основанию a»).

Например, log 5 25 = 2, так как 5 2 = 25.

Log 4 (1/16) = - 2, так как 4 -2 = 1/16.

Log 1/3 27 = - 3, так как (1/3) – 3 = 27.

Log 81 9 = ½, так как 81 ½ = 9.

Log 2 16; log 2 64; log 2 2; Log 2 1 ; log 2 (1/2); log 2 (1/8); Log 3 27; log 3 81; log 3 3; Log 3 1; log 3 (1/9); log 3 (1/3); Log1/2 1/32; log1/2 4; log0,5 0,125; Log0/5 (1/2); log0,5 1; log1/2 2. Вычислить:
Слайд 5

Log 2 16; log 2 64; log 2 2; Log 2 1 ; log 2 (1/2); log 2 (1/8); Log 3 27; log 3 81; log 3 3; Log 3 1; log 3 (1/9); log 3 (1/3); Log1/2 1/32; log1/2 4; log0,5 0,125; Log0/5 (1/2); log0,5 1; log1/2 2.

Вычислить:

Сравните со своими ответами ! Log 2 16; log 2 64; log 2 2; Log 2 1 ; log 2 (1/2); log 2 (1/8); Log 3 27; log 3 81; log 3 3; Log 3 1; log 3 (1/9); log 3 (1/3); Log1/2 1/32; log1/2 4; log0,5 0,125; Log0,5 (1/2); log0,5 1; log1/2 2. Таблица ответов. Если Вы всё выполнили верно, перейдите к слайду 8. Ес
Слайд 6

Сравните со своими ответами !

Log 2 16; log 2 64; log 2 2; Log 2 1 ; log 2 (1/2); log 2 (1/8); Log 3 27; log 3 81; log 3 3; Log 3 1; log 3 (1/9); log 3 (1/3); Log1/2 1/32; log1/2 4; log0,5 0,125; Log0,5 (1/2); log0,5 1; log1/2 2.

Таблица ответов.

Если Вы всё выполнили верно, перейдите к слайду 8. Если выполнили с ошибками – перейдите к слайду 7.

Правильное решение примеров 1 столбца: Log 2 16 = 4, так как 2 4 = 16. Log 2 1 = 0, так как 2 0 = 1. Log 3 27 = 3, так как 3 3 = 27. Log ½ 1/32 = 5, так как (1/2) 5 = 1/32. Log 0,5 (1/2) = 1, так как (0,5) 1 = (1/2)1 = ½. Проверьте 2 и 3 столбец, исправьте ошибки самостоятельно. Если появились вопро
Слайд 7

Правильное решение примеров 1 столбца:

Log 2 16 = 4, так как 2 4 = 16. Log 2 1 = 0, так как 2 0 = 1. Log 3 27 = 3, так как 3 3 = 27. Log ½ 1/32 = 5, так как (1/2) 5 = 1/32. Log 0,5 (1/2) = 1, так как (0,5) 1 = (1/2)1 = ½.

Проверьте 2 и 3 столбец, исправьте ошибки самостоятельно. Если появились вопросы – обратитесь к учителю.

Определение логарифма можно записать так: a log a b = b. Это равенство справедливо при b>0, а>0, а≠1. Его обычно называют основным логарифмическим тождеством. Например: 2 log 2 6 = 6; 3 – 2 log3 5 = (3 log 3 5 ) – 2 = 5 – 2 = 1/25. Вычислите: 3 log 3 18; 3 5log 3 2; 5 log 5 16; 0,3 2log 0,3 6;
Слайд 8

Определение логарифма можно записать так:

a log a b = b

Это равенство справедливо при b>0, а>0, а≠1. Его обычно называют основным логарифмическим тождеством.

Например: 2 log 2 6 = 6; 3 – 2 log3 5 = (3 log 3 5 ) – 2 = 5 – 2 = 1/25.

Вычислите:

3 log 3 18; 3 5log 3 2; 5 log 5 16; 0,3 2log 0,3 6; 10 log 10 2; (1/4) log(1/4) 6; 8 log 2 5; 9 log 3 12.

Таблица ответов: Если Вы выполнили всё правильно, перейдите к слайду 11. Если выполнили с ошибками, откройте слайд 10 и разберите решение.
Слайд 9

Таблица ответов:

Если Вы выполнили всё правильно, перейдите к слайду 11. Если выполнили с ошибками, откройте слайд 10 и разберите решение.

Правильное выполнение некоторых заданий. Остальные задания проверьте ещё раз самостоятельно. Если появился вопрос – обратитесь к учителю.
Слайд 10

Правильное выполнение некоторых заданий.

Остальные задания проверьте ещё раз самостоятельно. Если появился вопрос – обратитесь к учителю.

С В О Й С Т В А Л О Г А Р И Ф М О В . Log a 1 = 0; log a a = 1; log a (1/a) = - 1; log a a m = m; Log a m a = 1/m.
Слайд 11

С В О Й С Т В А Л О Г А Р И Ф М О В .

Log a 1 = 0; log a a = 1; log a (1/a) = - 1; log a a m = m; Log a m a = 1/m.

Приведем примеры применения формул: Log 6 18 + log 6 2 = log 6 (18·2) = log 6 36 = 2 Log 12 48 – log 12 4 = log 12 (48/4) = log 12 12 = 1. А здесь выполните вычисления самостоятельно: Log 10 5 + log 10 2; Log 12 2 + log 12 72; Log 2 15 – log 2 (15/16); Log1/3 54 – log1/3 2; Log 5 75 – log 5 3; Log 8
Слайд 12

Приведем примеры применения формул: Log 6 18 + log 6 2 = log 6 (18·2) = log 6 36 = 2 Log 12 48 – log 12 4 = log 12 (48/4) = log 12 12 = 1

А здесь выполните вычисления самостоятельно:

Log 10 5 + log 10 2; Log 12 2 + log 12 72; Log 2 15 – log 2 (15/16); Log1/3 54 – log1/3 2; Log 5 75 – log 5 3; Log 8 (1/16) – log 8 32; Log 8 12 – log 8 15 + log 8 20; Log 9 15 + log 9 18 – log 9 10;

Примеры выполнения некоторых заданий…. Log 10 5 + log 10 2 = log 10 (5 . 2) = log 10 10 = 1 Log 1/3 54 – log 1/3 2 = log 1/3 (54/2) = log 1/3 27 = -3 Log 8 12 – log 8 15 + log 8 20 = log 8(12/15) + log 8 20 = = log 8 (4/5 . 20) = log 8 16 = 2. Остальные задания проверьте самостоятельно. Если появилс
Слайд 13

Примеры выполнения некоторых заданий…

Log 10 5 + log 10 2 = log 10 (5 . 2) = log 10 10 = 1 Log 1/3 54 – log 1/3 2 = log 1/3 (54/2) = log 1/3 27 = -3 Log 8 12 – log 8 15 + log 8 20 = log 8(12/15) + log 8 20 = = log 8 (4/5 . 20) = log 8 16 = 2

Остальные задания проверьте самостоятельно. Если появился вопрос, обратитесь к учителю.

И таблица ответов:

* Вычислите : После выполнения этого задания обратитесь к учителю.
Слайд 14

* Вычислите :

После выполнения этого задания обратитесь к учителю.

Домашнее задание. Если со всеми предложенными заданиями Вы справились без ошибок, то Ваше домашнее задание: п.37, № 489, № 490, № № 495(b,в), №496(b,в,г). Если при выполнении предложенных заданий Вы испытывали затруднения и не смогли всё выполнить правильно, то Ваше домашнее задание: п.37, № 476, №
Слайд 15

Домашнее задание.

Если со всеми предложенными заданиями Вы справились без ошибок, то Ваше домашнее задание: п.37, № 489, № 490, № № 495(b,в), №496(b,в,г).

Если при выполнении предложенных заданий Вы испытывали затруднения и не смогли всё выполнить правильно, то Ваше домашнее задание: п.37, № 476, № 483(b,в), № 488, № 495(b,в).

« СЧИТАЙ НЕСЧАСТНЫМ ТОТ ДЕНЬ ИЛИ ЧАС, В КОТОРЫЙ ТЫ НЕ УСВОИЛ НИЧЕГО НОВОГО И НИЧЕГО НЕ ПРИБАВИЛ К СВОЕМУ ОБРАЗОВАНИЮ.». Я. А. КОМЕНСКИЙ.
Слайд 16

« СЧИТАЙ НЕСЧАСТНЫМ ТОТ ДЕНЬ ИЛИ ЧАС, В КОТОРЫЙ ТЫ НЕ УСВОИЛ НИЧЕГО НОВОГО И НИЧЕГО НЕ ПРИБАВИЛ К СВОЕМУ ОБРАЗОВАНИЮ.»

Я. А. КОМЕНСКИЙ.

СПАСИБО ЗА УРОК!
Слайд 17

СПАСИБО ЗА УРОК!

Конспекты

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

1001 идея интересного занятия с детьми. . РАЗРАБОТКА УРОКА ПО ТЕМЕ «АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА». Евграшина Наталья ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

Муниципальное бюджетное общеобразовательное учреждение. Наро-Фоминская средняя общеобразовательная школа №5. с углубленным изучением отдельных ...
АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

МОУ –лицей № 90. начальная школа. «АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. . . УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ». (конспект урока ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

УРОК В 9 КЛАССЕ ПО ТЕМЕ. «АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ» (2ч). Цели урока:. . 1). образовательная. : рассмотрение задач на применение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:22 мая 2019
Категория:Математика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации