Слайд 1Учение об антибиотиках. Стратегия антибактериальной терапии и пути преодоления резистентности микроорганизмов к антибиотикам профессор Кафарская Людмила Ивановна
Слайд 2Современная химиотерапия бактериальных инфекций
В группу антибиотиков объединяют в настоящее время химиотерапевтические вещества, образуемые при биосинтезе микроорганизмов, их производные и аналоги, вещества, полученные путем химического синтеза или выделенные из природных источников (ткани животных и растений), обладающие способностью избирательно подавлять в организме возбудителей заболеваний (бактерии, грибы, простейшие) или задерживать развитие злокачественных новообразований). Антибиотики могут оказывать иммуномодулирующее действие
Слайд 3Антибиотики относятся к наиболее часто назначае-мым группам лекарственных средств: 100% хирургических больных 70-100% соматических. В России используется 30 различных групп антибиотиков и около 200 препаратов.
Слайд 4ИСТОРИЯ ОТКРЫТИЯ АНТИБИОТИКОВ
Александр Флеминг в 1928 году открыл пенициллин.
Слайд 5Эрнест Чейн и Говард Вальтер Флори получили стабильную форму пенициллина в Оксфорде. 1940 год, Э.Чейн – пенициллин имеет форму В-лактама. Г.Флори и фирма«Мерк» в США запустили произ-водство пенициллина 1943г
Слайд 7В нашей стране в 1943 году в промышленное производство пенициллин запущен при активном участии Ермольевой З.В.
Слайд 8Уникальные свойства антибиотиков: Мишень-рецептор находится не в тканях человека, а в клетке микроорганизма. Активность антибиотиков не является постоянной, а снижается со временем, что обусловлено формированием устойчивости (резистентности). Резистентность – неизбежное биологическое явление, предотвратить ее практически невозможно. Антибиотикорезистентность – это опасность не только для пациента, но для многих других людей.
Слайд 9Генетические аспекты резистентности
Распространение и эволюция генов резистентности – результат взаимодействия различных генетических структур: хромосом, плазмид, фагов, транслоцирующих элементов. Механизмы передачи генов резистентности общие для всех процессов передачи генетической информации. При трансформации переносятся гены, локализованные как в хромосоме, так и в плазмидах. Этот процесс имеет значение прежде всего для пневмококков и нейссерий.
Слайд 10Роль трансдукции трансдукции ( с помощью фагов), в природе также ограничена. Основным способом переноса генов, локализованных в плазмидах, в пределах одного вида или между родственными видами является конъюгация. Передача плазмид происходит с высокой частотой, что приводит к распространению штаммов с внехромосомной устойчивостью. Приобретает характер эпидемии.
Слайд 11Конъюгация у бактерий
Слайд 12Свойства антибиотиков и требования к ним.
Высокая биологическая активность по отношению к чувствительным микроорганизмам. Избирательность действия - активность в отношении отдельных групп микроорганизмов. Требования : Максимальная терапевтическая эффективность при минимальной концентрации в организме человека. Максимальное действие при минимальной токсичности. Стабильность при широких диапазонах рН(per os). Не вызывать аллергических реакций у хозяина Не воздействовать на нормальную микрофлору
Слайд 13Классификация антибиотиков
По происхождению: Природные: Из собственно бактерий (грамицидин с) Из актиномицетов (стрептомицин) Из грибов и лишайников (пенициллин, цефалоспорины). Полусинтетические – продукты модификации молекул: Оксациллин, ампициллин и др. Синтетические : Сульфаниламиды Хлорамфеникол – природный, но получают синетичесим путем
Слайд 14По спектру антимикробной активности: Антибактериальные Противогрибковые Антипротозойные По типу взаимодействия: Бактериостатические – ингибируют рост, но не вызывают гибели бактерий, клетки сохраняют способность к росту (макролиды). Бактерицидные – убивают бактериальную клетку (аминогликозиды, пенициллины,цефалоспорины).
Слайд 15Классификация антибиотиков по механизму действия
Ингибиторы синтеза клеточной стенки. Ингибиторы синтеза белка на рибосомах. Ингибиторы синтеза нуклеиновых кислот Нарушающие функцию мембран клетки
Слайд 16Ингибиторы синтеза клеточной стенки- В-лактамные антибиотики
Слайд 17Механизм действия В-лактамных антибиотиков
Ингибируют фермент транспептидазу (осущест-вляет образование попереч-ных «межпептидных» связей между линейными цепями муреина). Транспептидаза один из пенициллин связывающих протеинов (ПСП). В присутствии пенициллина в бактериальной клетке активируют аутолизины, разрушающие пептидо-гликан.
Слайд 18В-лактамные антибиотики
Пенициллин (природный). Высокая активность по отношению Г+ коккам. Г+ палочковидным бактериям (бациллы и клостридии), Г- кокки (менингококки). Бактерицидный эффект. Неактивны по отношению Г- палочковидным (энтеробактерии:клебсиел-лы, эшерихии, протеи). Разрушаются В-лактамаза-ми (пенициллиназа).
Слайд 19Механизмы возникновения резистентности
Продукция ферментов: разрушающих антибиотик, таких как B-лактамазы (разрушают В-лактамное кольцо). Модифицирующих антибиотик (добавляются новые хими-ческие группы, которые инактивируют антибиотик).
Слайд 20Изменение структуры мишени транспептидазы (ПСП)– антибиотик не может связаться с мишенью и возникает резистентность ко всем В-лактамным анти-биотикам (MRSA).
Слайд 21Изменение проницаемости клеточных мембран.
Слайд 22Изменение структуры транспортных систем.
Слайд 23Полусинтетические пенициллины. Антистафилококковые пенициллины (оксациллин, клоксациллин). Спектр активности как у пенициллина. Устойчивы к действию пенициллиназы,(фермент, разрушающий антибиотик), эффективны в отношении PRSA, в этом основное клиническое значение препаратов.
Слайд 24Аминопенициллины (ампициллин, амоксициллин). Широкий спектр активности, действует на грамотрица-тельные (эшерихии,протеи, сальмонеллы). Неэффективен в отношении синегнойной палочки и клебсиелл. Слабее чем пенициллин в отношении стрептококков
Слайд 25В-лактамные антибиотики Антисинегнойные пенициллины
Карбоксипенициллины (карбенициллин, тикарциллин). Действуют на синегнойную палочку, протеи, некоторые неспорообразующие анаэробы ( B. fragilis). Неактивны в отношении клебсиелл и PRSA.
Слайд 26Уреидопенициллин (азлоциллин, мезлоциллин). Действуют в 4-8 раз актив- нее на синегнойную палочку, протеи Высокая активность к неспорообразующим анаэробам ( B. fragilis). Неактивны в отношении клебсиелл и PRSA.
Слайд 27В-лактамные структурно близкие пенициллинам соединения
Карбапенемы (имипенем, мерапенем) Широкий спектр активности в отношении всех клинически значимых микроорганизмов, включая проблемные (синегнойная палочка, энтерококк, неспорообразующие анаэробы). Неактивны в отношении MRSA. Антибиотики резерва, назначаются при тяжелых инфекциях, вызванных множественно устойчивыми микроорганизмами Ингибируют в-лактамазы.
Слайд 28В-лактамы моноциклические
Монобактамы (азтреонам, тазобактам). Выраженный бактерицидный эффект в отношении грамотрицательных, микроорга-низмов, устойчивы к действию В-лактамаз. Создание этих препаратов – пример преодоления резистентности, вызванной ферментами.
Слайд 29Защищенные пенициллины
Состоят из 2-х компонентов: В-лактамный антибиотик и ингибитор в-лактамаз (клавулановая кислота, сульбактам, тазобактам). Аугментин (амоксициллин + клавулановая кислота). Широкий спектр активности. Неактивны в отношении MRSA. Антибиотики резерва.
Слайд 30В-лактамные антибиотики цефалоспорины
Общие свойства цефа-лоспоринов: Выраженный бактерицидный эффект. Низкая токсичность. Широкий терапевтический диапазон. Синергизм с аминоглико-зидами. Не действуют на энтеро-кокки,MRSA.
Слайд 31В- лактамные антибиотики цефалоспорины
I поколение цефалоспоринов: Цефазолин, цефалотин,цефамезин. Спектр активности : Активны в отношении грамположительных микроорганизмов. Умеренная активность в отношении грамотрицательных. Не действует на синегнойную палочку, серрации. энтерококки,MRSA. Устойчивы к стафилококковым В-лактамазам.
Слайд 32II поколение цефалоспоринов6 Цефамандол, цефуроксим, цефаклор, цефметазол. По спектру активности в отношении грамположительных бактерий аналогичны цефалоспоринам I поколения. Более активны по отношению к грамотрицательным бактериям (клебсиеллы, эшерихии,сальмонеллы). Не действует на синегнойную палочку, серрации. энтерококки,MRSA.
Слайд 33III поколение цефалоспоринов: цефотаксим (клафоран), цефтазидим (фортум). Высокая активность в отношении грамотрицательных бактерий (включая госпитальные штаммы). Активность в отношении синегнойной палочки. Избирательная (цефтазидим) антианаэробная ( B. fragilis). активность. В отношении грамположительных кокков активность ниже, чем у цефалоспоринов I – II поколений Не действуют на энтерококки,MRSA. Применяются для лечения тяжелых форм инфекций.
Слайд 34IV поколение цефалоспоринов: Цефпирон, цефитим. Широкий спектр активности в отношении всех клинически значимых микроорганизмов, включая проблемные (синегнойная палочка, энтерококк, неспорообразующие анаэробы). Не действуют на энтерококки,MRSA. Устойчивы к действию В-лактамаз.
Слайд 35Побочные действия В-лактамных антибиотиков.
Ампициллин, пенициллин – аллергические реакции. Ампициллин, в меньшей степени цефалоспорины – дисбактериоз. Очень высокие дозы пенициллина нейротоксический эффект.
Слайд 36ИНГИБИРОВАНИЕ СИНТЕЗА КЛЕТОЧНОЙ СТЕНКИ ВАНКОМИЦИНОМ
Ванкомицин, ристомицин. Нарушают синтез клеточной стенки, путем комплексообразования с различными пептидными структурами и блокирует оба процесса: образование гликозидных и межпептид-ных связей. В результате нарушается целостность клеточной стенки и наступает осмотический лизис бактериальной клетки.
Слайд 37Гликопептидные антибиотики
Ванкомицин активен в отношении большинства грамположительных кокков, включая MRSA. Не действует на грамотрицательные бактерии и микобактерии. Препарат выбора для лечения инфекций, вызванных MRSA и энтерококками. Токсичен (ототоксичность, нефротоксичен, флебиты).
Слайд 38Ингибиторы синтеза белка
Аминогликозиды Содержат аминосахара, соединенные гликозидной связью с агликановым фрагментом. Связываются с 30S-субъединицей рибосом. Бактерицидный эффект связан с нарушением механизма связывания рибосом с Т-РНК и образованием дефектных инициационных комплексов
Слайд 39Аминогликозиды I поколение – стрептомицин, канамицин, мономицин. Активны в отношении грамотрицательных бактерий и микобактерий, возбудителей туберкулеза, бруцеллеза. II поколение – гентамицин, тобрамицин. Активны в отношении грамотрицательных бактерий, включая синегнойную палочку, энтеробактеры, серрации.Грамположительные кокки. III поколение –амикацин, нетилмицин Активны в отношении грамотрицательных бактерий, включая синегнойную палочку, энтеробактеры, серрации. Устойчивы к ферментам, инактивирующими другие аминогликозиды. Грамположительные кокки.
Слайд 40Аминогликозиды- побочные действия. Нефротоксический эффект – нарушения функции почек ( выражен у гентамицина). Ототоксичность – повреждения слухового нерва ( стрептомицин). Нарушается передача импульса в нервно-мышечном аппарате (курареподобный эффект).
Слайд 41Механизм резистентности к аминогликозидам
Важнейший механизм – ферментативный. Добавляются новые химические группы, которые инактивируют антибиотик. Метилирование Ацетилирование Фосфорилирование
Слайд 42Макролиды в структуре содержат макроциклическое лактонное кольцо, связанное с углеводными остатками. Природные : эритромицин, олеанодомицин, рокситромицин Полусинтетические Азитромицин Кларитромицин
Слайд 43МЕХАНИЗМ ДЕЙСТВИЯ МАКРОЛИДОВ
Связываются с 50S субъединицей рибосом.
Слайд 44Общие свойства макролидов: Бактеристатическое действие. Преимущественная активность против грамположительных кокков (стрептококки, стафилококки). Активность против хламидий, микоплазм. риккетсий. Неактивны в отношении грамотрицательных бактерий. Очень низкая токсичность. Усиливают перистальтику кишечника
Слайд 45Производное эритромицина азитромицин (азалиды). Обладает уникальной способностью накапливаться внутри эукариотической клетки и во внесосудистом русле.Концентрация в тканях в 100 раз выше, чем в сыворотке. Более активны в отношении грамотрицательных бактерий, включая H.influensa, N. gonorrhoeae. Препарат выбора для лечения инфекций, передающихся половым путем и инфекций верхних дыхательных путей.
Слайд 46Механизм резистентности к макролидам
Механизм резистентности к макролидам ферментатив-ный, метилирование 2х адениловых остатков в 23S рибосомальной РНК, анти-биотик не соединяется с рибосомой.
Слайд 47Линкомицин и клин-дамицин. Связываются с 50S субъединицей По антимикробному действию близки к макролидам. Активны а отношении грамположительных кокков Некоторых грамположительных палочек, микоплазм. Выражена антианаэробная активность Не действуют на грамотрицательные.
Слайд 48Линкомицин и клиндамицин. Накапливается в костной ткани. Иммуномодуляторы. Побочные эффекты – псевдомембранозный колит, что связано с избыточным размножением Closridium difficile.
Слайд 49Псевдомембранозный колит
Побочные эффекты псевдомембранозный колит. Связано с избыточным размножением Closridium difficile. 2 токсина Энтеротоксин Цитотоксин Возникает диарея, воспаление. Лечение ванкомицином
Слайд 50Тетрациклины (доксациклин) связываются с 30S субъединицей, воздействует и на 70S млекопитающих. Широкий спектр активности: Г+, Г-, хламидии, риккетсии, бруцеллы, йерсинии. Новое поколение-глилцилциклин.
Слайд 51Резистентность к тетрациклину
Изменение структуры транспортных систем. Механизм резистентности- эффект «помпы».
Слайд 52Побочные эффекты тетрациклинов. «Черные зубы у детей».Откладываются в костной ткани. Фотосенсибилизация. ЖКТ – рвота натощак.
Слайд 53Оксазолидины Линезолид - новое поколение антибиотиков.
Слайд 54Линезолид новая группа антибиотиков. Связывается с 23S рибосомальной РНК в 50 Sсубъединице рибосом. Активен в отношении ванкомицин-резистентных энтерококков метициллин-резистентных стафилококков, пенициллин-резистентных пневмококков. Бактерицидный эффект в отношении пневмококков. Бактериостатический по отношению энтерококков и метициллин-резистентных стафилококков.
Слайд 55Препараты, нарушающие синтез нуклеиновых кислот.
Первые хинолоны - нали- диксовая кислота. Фторхинолоны Ципрофлоксацин Офлоксацин Норфлоксацин. «Респираторные фторхинолоны» Левофлоксацин, мoкси-флоксацин.
Слайд 56Механизм действия фторхинолонов
Ингибируют фермент – ДНК-гиразу, бактериальную) нарушается суперспирализация ДНК. Бактериальная клетка не может осуществлять репликацию ДНК
Слайд 57Механизм резистентности к фторхинолонов
Изменение структуры-мишени ДНК-гиразы и топоизомеразы IV.
Слайд 58Препараты, нарушающие синтез нуклеиновых кислот
Рифампицин –нарушает синтез бактериальной РНК, блокируя фермент фермент РНК полимеразу. Активны в отношении M.tuberculosis, N.meningitidis, H.influenzae. Окрашивает при выведении в оранжевый цвет мочу, слюну.
Слайд 59Антибиотики, нарушающие функцию мембран клетки.
Полимиксины семейство полипептидных Антибиотиков. Полимиксин Е – циклический полипептид, в его составе 10 аминокислот. Положительно заряженные аминогруппы действуют как детергент, разрывает фосфолипидные структу-ры в мембране клетки. Активен в отношении Г- бактерий, особенно синегнойной палочки. Нефротоксичен, нейротоксичен.
Слайд 60Липопептидные антибиотики-новый класс мембраноактивных антибиотиков. Даптомицин – бактерицидная активность в отношении резистентных Г+ кокков (энтерококков, метициллин-резистентных стафилококков. Вызывает деполяризацию Цитоплазматическойю Резистентность редкою Токсичны
Слайд 61Препараты, нарушающие мембраны клеток грибов
Полиеновые антибиотики ( содержат много ненасыщенных двойных связей в макролидной структуре), связываются с эргостеролами мембран грибов. Амфотерицин В