- ДИССОЦИАЦИЯ ДИССОЦИАЦИЯ

Презентация "ДИССОЦИАЦИЯ ДИССОЦИАЦИЯ" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "ДИССОЦИАЦИЯ ДИССОЦИАЦИЯ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Электролитическая диссоциация. 1.Электролиты и неэлектролиты; 2.Электролитическая диссоциация; 3.Причины диссоциации веществ; 4.Уравнения диссоциации; 5.Диссоциация кислот, оснований и солей; 6.Степень диссоциации и сила электролитов; 7.Ионные реакции. веществ. Изучаемые вопросы:
Слайд 1

Электролитическая диссоциация

1.Электролиты и неэлектролиты; 2.Электролитическая диссоциация; 3.Причины диссоциации веществ; 4.Уравнения диссоциации; 5.Диссоциация кислот, оснований и солей; 6.Степень диссоциации и сила электролитов; 7.Ионные реакции.

веществ

Изучаемые вопросы:

Все вещества по электрической проводимости подразделяются на электролиты и неэлектролиты. Электролитами называют вещества, растворы или расплавы которых проводят электрический ток. К ним относится большинство неорганических веществ, например, кислоты, основания, соли, оксиды металлов. Для электролит
Слайд 2

Все вещества по электрической проводимости подразделяются на электролиты и неэлектролиты. Электролитами называют вещества, растворы или расплавы которых проводят электрический ток. К ним относится большинство неорганических веществ, например, кислоты, основания, соли, оксиды металлов. Для электролитов характерны ионные или ковалентные полярные связи. Неэлектролитами называются вещества, которые не проводят электрический ток ни в растворах, ни в расплавах. Сюда относится большинство органических веществ (спирт, ацетон, бензин, сахар, масло и другие) и некоторые неорганические вещества (дистиллированная вода, углекислый газ, кислород). Для неэлектролитов характерны ковалентные неполярные или малополярные химические связи.

Электролиты и неэлектролиты

ещё раз повторим:
Слайд 3

ещё раз повторим:

Процесс распада электролитов на заряженные частицы ─ ионы называют электролитической диссоциацией («dissociation» ─ разобщение). Основные положения теории электролитической диссоциации сформулированы в 1887 году шведским учёным Сванте Аррениусом. Большой вклад в развитие этого учения внесли русские
Слайд 4

Процесс распада электролитов на заряженные частицы ─ ионы называют электролитической диссоциацией («dissociation» ─ разобщение). Основные положения теории электролитической диссоциации сформулированы в 1887 году шведским учёным Сванте Аррениусом. Большой вклад в развитие этого учения внесли русские учёные И.А.Каблуков, В.А.Кистяковский, Д.И.Менделеев.

Диссоциация протекает или в водных растворах, или при расплавлении электролита. В первом случае причиной диссоциации является особое свойство воды ─ высокая диэлектрическая проницаемость: молекулы H2O в 81 раз ослабляют химические связи между ионами, поэтому кристалл легко распадается на ионы. Кажды
Слайд 5

Диссоциация протекает или в водных растворах, или при расплавлении электролита. В первом случае причиной диссоциации является особое свойство воды ─ высокая диэлектрическая проницаемость: молекулы H2O в 81 раз ослабляют химические связи между ионами, поэтому кристалл легко распадается на ионы. Каждый ион окружается «рубашкой» из молекул воды (гидратируется), которая не позволяет ионам вновь соединиться между собой. При плавлении электролитов усиливаются колебательные движения ионов, в результате чего ионная кристаллическая решётка разрушается, а положительные (катионы) и отрицательные ионы (анионы) становятся свободными.

Причины диссоциации веществ

Уравнение, отражающее обратимый процесс (↔) диссоциации данного вещества, называется уравнением диссоциации. В растворе или расплаве преимущественно находятся ионы (→). При испарении воды или охлаждении расплава вновь образуются кристаллы или молекулы(←): KOH  K+ + OH─ HCl  H+ + Cl─ K2SO4 2K+ + S
Слайд 6

Уравнение, отражающее обратимый процесс (↔) диссоциации данного вещества, называется уравнением диссоциации. В растворе или расплаве преимущественно находятся ионы (→). При испарении воды или охлаждении расплава вновь образуются кристаллы или молекулы(←): KOH  K+ + OH─ HCl  H+ + Cl─ K2SO4 2K+ + SO42─ Fe2(SO4)3  2Fe3+ + 3SO42─ При написании уравнений диссоциации следите, чтобы сумма положительных и отрицательных зарядов в правой части уравнения была равна 0.

Уравнения диссоциации

Диссоциация кислот. Кислотами называют электролиты, которые при диссоциации образуют катионы только Н+, например: HNO3  H+ + NO3 ─ H2SO4  H+ + HSO4 ─ 2 H+ + SO42 ─ H3PO4  H+ + H2PO4─  2 H+ + HPO42 ─  3H+ + PO4 3─ Одноосновные кислоты диссоциируют в одну стадию, а многоосновные кислоты диссоции
Слайд 7

Диссоциация кислот

Кислотами называют электролиты, которые при диссоциации образуют катионы только Н+, например: HNO3  H+ + NO3 ─ H2SO4  H+ + HSO4 ─ 2 H+ + SO42 ─ H3PO4  H+ + H2PO4─  2 H+ + HPO42 ─  3H+ + PO4 3─ Одноосновные кислоты диссоциируют в одну стадию, а многоосновные кислоты диссоциируют ступенчато. Двухосновные и трёхосновные кислоты наряду с нормальными (средними) солями образуют кислые соли, например: KHSO4 ─ гидросульфат калия, KH2PO4 ─ дигидрофосфат калия , K2HPO4 ─ гидрофосфат калия и другие. Кислоты окрашивают все индикаторы в красный цвет разных оттенков.

Основаниями называют электролиты, которые при диссоциации образуют анионы только OH─ : NaOH  Na+ + OH ─ Ca(OH)2 CaOH+ + OH ─  Ca2+ + 2 OH ─ Ba(OH)2  BaOH+ + OH ─  Ba2+ + 2 OH ─ Однокислотные основания диссоциируют в одну стадию, а многокислотные ─ ступенчато. Многокислотные основания наряду с н
Слайд 8

Основаниями называют электролиты, которые при диссоциации образуют анионы только OH─ : NaOH  Na+ + OH ─ Ca(OH)2 CaOH+ + OH ─  Ca2+ + 2 OH ─ Ba(OH)2  BaOH+ + OH ─  Ba2+ + 2 OH ─ Однокислотные основания диссоциируют в одну стадию, а многокислотные ─ ступенчато. Многокислотные основания наряду с нормальными (средними) солями образуют основные соли, например: Ca(OH)Cl ─ гидроксохлорид кальция; Al(OH)2Cl ─ дигидроксохлорид алюминия. Основания (щёлочи) окрашивают бесцветный фенолфталеин в малиновый цвет, а лакмус и универсальный индикатор ─ в синий.

Диссоциация оснований

Солями называют электролиты, которые при диссоциации образуют катионы металла (или аммония NH4+) и анионы кислотного остатка: K3PO4  3K+ + PO43─ Al2(SO4)3  2Al3+ + 3SO4 2─ NH4NO3  NH4+ + NO3─ Кислые соли могут при диссоциации образовать кроме названных ионов ещё и катионы водорода H+ : NaHSO4  N
Слайд 9

Солями называют электролиты, которые при диссоциации образуют катионы металла (или аммония NH4+) и анионы кислотного остатка: K3PO4  3K+ + PO43─ Al2(SO4)3  2Al3+ + 3SO4 2─ NH4NO3  NH4+ + NO3─ Кислые соли могут при диссоциации образовать кроме названных ионов ещё и катионы водорода H+ : NaHSO4  Na+ + HSO4─  Na+ + H+ + SO42─

Диссоциация солей

Сила электролитов определяется их степенью диссоциации ─ α (альфа). Степень диссоциации это отношение числа диссоциированных молекул к общему числу молекул, находящихся в растворе: α = n/N где n – число диссоциированных молекул, N - общее число молекул в растворе. Сильные электролиты имеют α от 30%
Слайд 10

Сила электролитов определяется их степенью диссоциации ─ α (альфа). Степень диссоциации это отношение числа диссоциированных молекул к общему числу молекул, находящихся в растворе: α = n/N где n – число диссоциированных молекул, N - общее число молекул в растворе. Сильные электролиты имеют α от 30% до 100% например, серная кислота H2SO4( α = 58% ). Слабые электролиты имеют α от 0% до 2% например, угольная H2CO3( α = 0,17% ) и сероводородная H2S( α = 0,07% ) кислоты.

Степень диссоциации и сила электролитов

Итак, не все электролиты в одинаковой степени распадаются на ионы. Растворимые соли в водных растворах диссоциируют полностью, то есть являются сильными электролитами. К сильным электролитам относятся также щёлочи и некоторые кислоты ─ соляная, серная, азотная, хлорная. Вещества лучше диссоциируют в
Слайд 11

Итак, не все электролиты в одинаковой степени распадаются на ионы. Растворимые соли в водных растворах диссоциируют полностью, то есть являются сильными электролитами. К сильным электролитам относятся также щёлочи и некоторые кислоты ─ соляная, серная, азотная, хлорная. Вещества лучше диссоциируют в разбавленных растворах, а с повышением концентрации раствора степень диссоциации понижается

Реакции обмена между растворами или расплавами электролитов называют ионообменными или ионными реакциями. Протекание таких реакций обнаруживается легко, если в результате образовался осадок (↓), выделился газ (↑) или получилась практически не диссоциирующая вода H2O. В таком случае говорят, что реак
Слайд 12

Реакции обмена между растворами или расплавами электролитов называют ионообменными или ионными реакциями. Протекание таких реакций обнаруживается легко, если в результате образовался осадок (↓), выделился газ (↑) или получилась практически не диссоциирующая вода H2O. В таком случае говорят, что реакция протекает до конца. Уравнения ионных реакций записывают подробно в 3 видах ─ молекулярном, полном ионном и сокращённом ионном.

Реакции ионного обмена

С образованием осадка ( при написании уравнений используем «Таблицу растворимости» ): 1) NaCl + AgNO3 → AgCl↓ + NaNO3 Na+ + Cl─ + Ag+ + NO3 ─ → AgCl↓ + Na+ + NO3 Cl─ + Ag+ → AgCl↓ (белый творожистый, синеет на свету) 2) BaCl2 + K2SO4 → BaSO4 ↓ + 2KCl Ba2+ + 2Cl─ + 2K+ + SO42─ → BaSO4 ↓ + 2K+ + 2Cl─
Слайд 13

С образованием осадка ( при написании уравнений используем «Таблицу растворимости» ): 1) NaCl + AgNO3 → AgCl↓ + NaNO3 Na+ + Cl─ + Ag+ + NO3 ─ → AgCl↓ + Na+ + NO3 Cl─ + Ag+ → AgCl↓ (белый творожистый, синеет на свету) 2) BaCl2 + K2SO4 → BaSO4 ↓ + 2KCl Ba2+ + 2Cl─ + 2K+ + SO42─ → BaSO4 ↓ + 2K+ + 2Cl─ Ba2+ + SO42─ → BaSO4 ↓ (белый, не растворяется в кислотах) 3) CuSO4 + 2KOH → Cu(OH)2 ↓ + K2SO4 Cu2+ + SO42─ + 2K+ + 2OH─ → Cu(OH)2 ↓ + 2K+ + SO42─ Cu2+ + 2OH─ → Cu(OH)2 ↓ (бирюзовый, постепенно чернеет)

С выделением газа: 1) K2CO3 + 2HCl → 2KCl + H2CO3
Слайд 14

С выделением газа: 1) K2CO3 + 2HCl → 2KCl + H2CO3

С образованием воды (нейтрализация): 1) NaOH + HNO3 → NaNO3 + H2O Na+ + OH─ + H+ + NO3─ → Na+ + NO3─ + H2O OH─ + H+ → H2O 2) H3PO4 + 3KOH → K3PO4 + 3H2O 3H+ + PO43─ + 3K+ + 3OH─ → 3K+ +PO43─ + 3H2O 3H+ + 3OH─ → 3H2O H+ + OH─ → H2O
Слайд 15

С образованием воды (нейтрализация): 1) NaOH + HNO3 → NaNO3 + H2O Na+ + OH─ + H+ + NO3─ → Na+ + NO3─ + H2O OH─ + H+ → H2O 2) H3PO4 + 3KOH → K3PO4 + 3H2O 3H+ + PO43─ + 3K+ + 3OH─ → 3K+ +PO43─ + 3H2O 3H+ + 3OH─ → 3H2O H+ + OH─ → H2O

Ионные реакции между некоторыми солями и водой, протекающие с образованием новых ионов, называются гидролизом солей («водным разрушением»). Известны следующие случаи взаимодействий между солью и водой: 1) Вода и соль сильного основания и сильной кислоты не образуют новых ионов ─ KCl, Na2SO4, Ba(NO3)
Слайд 16

Ионные реакции между некоторыми солями и водой, протекающие с образованием новых ионов, называются гидролизом солей («водным разрушением»). Известны следующие случаи взаимодействий между солью и водой: 1) Вода и соль сильного основания и сильной кислоты не образуют новых ионов ─ KCl, Na2SO4, Ba(NO3)2 и другие, ─ гидролиза нет.

Гидролиз солей

2) Вода и соль сильного основания, но слабой кислоты образуют недиссоциирующие ионы слабой кислоты, а в растворе накапливаются гидроксид-анионы OH─, определяющие щелочную среду раствора: K2CO3  2K+ + CO32─ + HOH  H+ + OH─ H+ + CO32─ → H CO3─ --------------------------------------------------------
Слайд 17

2) Вода и соль сильного основания, но слабой кислоты образуют недиссоциирующие ионы слабой кислоты, а в растворе накапливаются гидроксид-анионы OH─, определяющие щелочную среду раствора: K2CO3  2K+ + CO32─ + HOH  H+ + OH─ H+ + CO32─ → H CO3─ ---------------------------------------------------------------------------- K2CO3 + HOH → H CO3─ + 2K+ + OH─ В растворах карбонатов, силикатов и сульфидов щелочных и щелочноземельных металлов индикаторы показывают присутствие щёлочи (фенолфталеин становится малиновым, а лакмус синеет).

3) Вода и соль слабого основания, но сильной кислоты образуют недиссоциирующие ионы слабого основания, а в растворе накапливаются катионы водороды, H+ определяющие кислотную среду раствора: FeSO4  Fe2+ + SO42─ HOH  H+ + OH─ Fe2+ + OH─ → Fe OH+ ------------------------------------------------------
Слайд 18

3) Вода и соль слабого основания, но сильной кислоты образуют недиссоциирующие ионы слабого основания, а в растворе накапливаются катионы водороды, H+ определяющие кислотную среду раствора: FeSO4  Fe2+ + SO42─ HOH  H+ + OH─ Fe2+ + OH─ → Fe OH+ ------------------------------------------------------------------------- FeSO4 + HOH → Fe OH+ + SO42─ + H+ В растворах солей тяжёлых металлов (железа, свинца, меди, цинка, ртути и других) с сильными кислотами индикаторы окрашиваются в красный цвет, то есть свидетельствуют о кислотной среде.

4) Соли, образованные слабыми основаниями и слабыми кислотами необратимо разрушаются водой, иными словами происходит их полный гидролиз с образованием новых недиссоциирующих веществ. К числу таких солей относится сульфид железа (+3) Fe2S3: Fe2S3 2Fe3+ + 3S2─ + 6HOH  6H+ + 6OH─ 2Fe3+ + 6OH─ → 2Fe(O
Слайд 19

4) Соли, образованные слабыми основаниями и слабыми кислотами необратимо разрушаются водой, иными словами происходит их полный гидролиз с образованием новых недиссоциирующих веществ. К числу таких солей относится сульфид железа (+3) Fe2S3: Fe2S3 2Fe3+ + 3S2─ + 6HOH  6H+ + 6OH─ 2Fe3+ + 6OH─ → 2Fe(OH)3↓ 6H+ + 3S2─ → 3H2S↑ ---------------------------------------------------------------------------- Fe2S3 + 6HOH → 2Fe(OH)3↓ + 3H2S↑

Электролиты ─ это вещества, которые при растворении в воде или расплавлении распадаются на ионы, их растворы и расплавы проводят электрический ток. Ионы ─ это атомы или группы атомов, обладающие положительным (катионы) или отрицательным (анионы) электрическим зарядом. Распад электролитов на ионы наз
Слайд 20

Электролиты ─ это вещества, которые при растворении в воде или расплавлении распадаются на ионы, их растворы и расплавы проводят электрический ток. Ионы ─ это атомы или группы атомов, обладающие положительным (катионы) или отрицательным (анионы) электрическим зарядом. Распад электролитов на ионы называют электролитической диссоциацией и записывают в виде уравнений диссоциации.

Выводы по теме:

Кислотами называют электролиты, которые при диссоциации образуют катионы только Н+. Основаниями называют электролиты, которые при диссоциации образуют анионы только OH─ (гидроксид-анионы). Солями называют электролиты, которые при диссоциации образуют катионы металлов и анионы кислотных остатков. Хим
Слайд 21

Кислотами называют электролиты, которые при диссоциации образуют катионы только Н+. Основаниями называют электролиты, которые при диссоциации образуют анионы только OH─ (гидроксид-анионы). Солями называют электролиты, которые при диссоциации образуют катионы металлов и анионы кислотных остатков. Химические реакции между электролитами называются ионными, они протекают до конца в 3 случаях: если выпадает осадок, если выделяется газ, если образуется вода.

Вода является очень слабым электролитом, вступая в химическую реакцию с некоторыми солями, она вызывает их разрушение ─ гидролиз, с образованием кислотной или щелочной среды, а иногда необратимое разрушение (полный гидролиз). Гидролиз солей необходимо учитывать при хранении различных солей, особенно
Слайд 22

Вода является очень слабым электролитом, вступая в химическую реакцию с некоторыми солями, она вызывает их разрушение ─ гидролиз, с образованием кислотной или щелочной среды, а иногда необратимое разрушение (полный гидролиз). Гидролиз солей необходимо учитывать при хранении различных солей, особенно их растворов, при изготовлении водных растворов лекарств, при использовании питательных растворов удобрений в сельском хозяйстве, в химических лабораториях и так далее.

Список похожих презентаций

«Электролитическая диссоциация» химия

«Электролитическая диссоциация» химия

Электролитическая диссоциация. H2O. Процесс распада электролита на ионы при растворении его в воде или расплавлении называется электролитической диссоциацией. ...
Незнайка в стране химия

Незнайка в стране химия

Я – известный химик Незнайка. Я знаю все и все могу. Сейчас я взмахну волшебной палочкой и начнется извержение вулкана. Смотри! А теперь все за мной ...
М.В. Ломоносов и химия

М.В. Ломоносов и химия

- М.В. Ломоносов был создателем многих химических производств (неорганических пигментов, глазурей, стекла, фарфора). - Он разработал технологию и ...
«Задачи» химия

«Задачи» химия

- исследование задач по нанонауке; - ознакомление с наномиром: о достижениях нанохимии и нанотехнологии; - составление задач по нанонауке; - решение ...
Строение вещества химия

Строение вещества химия

СТРОЕНИЕ ВЕЩЕСТВА. Основополагающий вопрос КАК УСТРОЕН МИР? Проблемные вопросы Из чего сделано все на Земле? Почему все устроено так, а не иначе? ...
Своя игра. Физика и химия

Своя игра. Физика и химия

Интегрированный урок ФИЗИКА+ХИМИЯ. Авторы: Орлова И.В., Шувалова Л.В. Муниципальное образовательное учреждение Фоминская средняя общеобразовательная ...
Откуда ты, химия ?

Откуда ты, химия ?

Химические элементы. Роберт Бойль – впервые дал определение химического элемента. Джон Дальтон – впервые ввёл понятие атомного веса. А.М.Бутлеров ...
Органическая химия "Жиры"

Органическая химия "Жиры"

Рацион питания Белки Жиры Углеводы 2а, 2б 1 4б, 5. Роль жиров в здоровом питании спортсменов. Жиры хорошо усваиваются организмом, имеют высокую калорийность, ...
Аналитическая химия

Аналитическая химия

План доклада. Аналитическая химия (определение) Гармонизация терминологии по аналитической химии Роль терминологии Источники терминологии Цели и задачи ...
Аналитическая химия

Аналитическая химия

Определение. Аналити́ческая хи́мия — раздел химии, изучающий химический состав и структуру веществ; имеет целью определение элементов или групп элементов, ...
алюминий химия

алюминий химия

получение алюминия. Применение алюминия. ...
Азот химия

Азот химия

План урока:. История открытия Цели Нахождение в природе Строение и свойства атома и молекулы Физические и химические свойства Получение и применение ...
«Окислительно-восстановительные реакции» химия

«Окислительно-восстановительные реакции» химия

СОДЕРЖАНИЕ:. 1. Какие реакции называются окислительно-восстановительными? 2. Что называют окислителем, восстановителем? 3. Окислительно-восстановительный ...
«Нуклеиновые кислоты» химия

«Нуклеиновые кислоты» химия

Цель урока: сформировать у студентов понимание взаимосвязанности и взаимозависимости веществ в клетке. Задачи урока: повторить строение и основные ...
Органическая химия

Органическая химия

история развития органической химии предмет органической химии особенности органических веществ Бутлеров теория строения органических соединений Бутлерова ...
Аналитическая химия

Аналитическая химия

Цель программы:. Фундаментальная подготовка магистрантов в области аналитической химии со знанием современных физико-химических методов анализа (хроматографических, ...
Органическая химия

Органическая химия

Органическая химия – химия углеводородов и их производных. Углеводороды (УВ) – простейшие органические вещества, молекулы которых состоят из атомов ...
Белки химия

Белки химия

Содержание. Определение Функции белков Источники аминокислот Строение полипептидной цепи Структура белка Химические свойства Превращения белков в ...
Органическая химия как наука

Органическая химия как наука

Содержание. Знакомство с историей возникновения науки органическая химия Органические вещества Схемы реакций Органическая химия Электронное строение ...
Бытовая химия

Бытовая химия

Цель исследования, изучить влияние препаратов бытовой химии на здоровье человека. Задачи исследования: 1. Изучить опасности современной бытовой химии; ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 февраля 2019
Категория:Химия
Содержит:22 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации