- Фундаментальные взаимодействия

Презентация "Фундаментальные взаимодействия" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29

Презентацию на тему "Фундаментальные взаимодействия" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 29 слайд(ов).

Слайды презентации

Фундаментальные взаимодействия. Выполнила Студентка 554 гр. Бойнова Екатерина 2007 год
Слайд 1

Фундаментальные взаимодействия

Выполнила Студентка 554 гр. Бойнова Екатерина 2007 год

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.
Слайд 2

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.

Элементарные частицы: 1. Лептоны – элементарные частицы, не участвующие в сильном взаимодействии (электроны, нейтрино, мюон). 2. Адроны - частицы участвующие в сильных, электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов(протоны, нейтроны). 3. Калибровочные бозоны - части
Слайд 3

Элементарные частицы: 1. Лептоны – элементарные частицы, не участвующие в сильном взаимодействии (электроны, нейтрино, мюон). 2. Адроны - частицы участвующие в сильных, электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов(протоны, нейтроны). 3. Калибровочные бозоны - частицы переносящие взаимодействие между фундаментальными фермионами (кварками и лептонами).

Основные характеристики частиц: -)Масса частицы, m. ( от 0 (фотон) до 90 ГэВ (Z-бозон)); -) Время жизни; -)Спин; -)Электрический заряд.
Слайд 4

Основные характеристики частиц: -)Масса частицы, m. ( от 0 (фотон) до 90 ГэВ (Z-бозон)); -) Время жизни; -)Спин; -)Электрический заряд.

Фундаментальные взаимодействия: -)гравитационное; -)электромагнитное; -)слабое; -)сильное.
Слайд 5

Фундаментальные взаимодействия: -)гравитационное; -)электромагнитное; -)слабое; -)сильное.

Гравитационное взаимодействие: Первое лабораторное наблюдение гравитационного притяжения между двумя телами было проведено в 1774 г. шотландецем Невилом Маскелином и в 1797 г. Генри Кавендишом.
Слайд 6

Гравитационное взаимодействие: Первое лабораторное наблюдение гравитационного притяжения между двумя телами было проведено в 1774 г. шотландецем Невилом Маскелином и в 1797 г. Генри Кавендишом.

Ньютоновская теория всемирного тяготения.
Слайд 8

Ньютоновская теория всемирного тяготения.

Квантовая гравитация
Слайд 9

Квантовая гравитация

Слабое взаимодействие: Если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.
Слайд 10

Слабое взаимодействие:

Если в процессе взаимодействия участвует элементарная частица, называемая нейтрино (или антинейтрино), то данное взаимодействие является слабым.

Слабое взаимодействие: 1054 г. – Сверхновая звезда; 1896 г. - Анри Беккерель открыл радиоактивность; Эрнест Резерфорд - радиоактивные атомы испускают частицы: альфа и бета.
Слайд 11

Слабое взаимодействие: 1054 г. – Сверхновая звезда; 1896 г. - Анри Беккерель открыл радиоактивность; Эрнест Резерфорд - радиоактивные атомы испускают частицы: альфа и бета.

Типичный пример слабого взаимодействия - это бета-распад нейтрона
Слайд 12

Типичный пример слабого взаимодействия - это бета-распад нейтрона

Условное обозначение слабого взаимодействия:
Слайд 14

Условное обозначение слабого взаимодействия:

Электромагнитное взаимодействие: XVIII—XIX вв. – Б. Франклин, М. Фарадей. Д. Томсон - существование электрона. Конец XVI в. - Гильберт - природа магнетизма. 50-е г. XIX в. - Максвелл, объединил электричество и магнетизм в единую теорию электромагнетизма.
Слайд 15

Электромагнитное взаимодействие:

XVIII—XIX вв. – Б. Франклин, М. Фарадей. Д. Томсон - существование электрона. Конец XVI в. - Гильберт - природа магнетизма. 50-е г. XIX в. - Максвелл, объединил электричество и магнетизм в единую теорию электромагнетизма.

Квантовое электромагнитное взаимодействие между зарядами
Слайд 17

Квантовое электромагнитное взаимодействие между зарядами

Сильное взаимодействие: (1973 г.). Оно занимает первое место по силе и является источником огромной энергии.
Слайд 18

Сильное взаимодействие: (1973 г.)

Оно занимает первое место по силе и является источником огромной энергии.

Условное изображение сильного взаимодействия:
Слайд 20

Условное изображение сильного взаимодействия:

Фундаментальные взаимодействия:
Слайд 21

Фундаментальные взаимодействия:

Рычажные весы:
Слайд 22

Рычажные весы:

Создание единой теории фундаментальных взаимодействий. 1863 г. – Максвелл – теория электромагнетизма. 1915 г. – Эйнштейн – общая теория относительности. 1967 г. – Салам и Вайтберг – теория электрослабого взаимодействия. 1973 г. – теория сильного взаимодействия (квантовая хромодинамика).
Слайд 23

Создание единой теории фундаментальных взаимодействий

1863 г. – Максвелл – теория электромагнетизма. 1915 г. – Эйнштейн – общая теория относительности. 1967 г. – Салам и Вайтберг – теория электрослабого взаимодействия. 1973 г. – теория сильного взаимодействия (квантовая хромодинамика).

Модели объединения: Великое объединение. Е >= 1015 ГэВ – единое взаимодействие Е
Слайд 24

Модели объединения:

Великое объединение. Е >= 1015 ГэВ – единое взаимодействие Е

2.Суперобъединение: Теория струн; Теория бран; М-теория.
Слайд 25

2.Суперобъединение:

Теория струн; Теория бран; М-теория.

Теория струн. создатели – физики М.Грин и Д.Шварц. Струны представляют собой отрезки со свободными концами или соединенными в виде восьмерки. Их размеры - примерно 10 -33 см.
Слайд 26

Теория струн.

создатели – физики М.Грин и Д.Шварц. Струны представляют собой отрезки со свободными концами или соединенными в виде восьмерки. Их размеры - примерно 10 -33 см.

Каждая элементарная частица, согласно теории суперструн, состоит из колеблющегося и тонкого (бесконечно тонкого) волокна, которое физики и назвали струной.
Слайд 27

Каждая элементарная частица, согласно теории суперструн, состоит из колеблющегося и тонкого (бесконечно тонкого) волокна, которое физики и назвали струной.

На сегодняшний день у теории суперструн есть следующие теоретические достижения: - она открыла путь к построению теории гравитации; - она позволила объединение в единой математической структуре всех четырех фундаментальных взаимодействий и показала, что это разные проявления одного и того же физичес
Слайд 28

На сегодняшний день у теории суперструн есть следующие теоретические достижения: - она открыла путь к построению теории гравитации; - она позволила объединение в единой математической структуре всех четырех фундаментальных взаимодействий и показала, что это разные проявления одного и того же физического принципа; - она дала возможность разрешить большинство парадоксов, возникающих при конструировании квантовых моделей черных дыр; - она дала новый взгляд на происхождение Вселенной и теорию Большого Взрыва. Однако, все не так просто. Уравнения теории суперструн дают правильные решения только при одном условии - если наше пространство является 11-мерным!

Литература: И. Л. Бухбиндер /Фундаментальные взаимодействия/Соросовский образовательный журнал, N 5, 1997 г. Стр. 66-73. Окунь Л.Б. /Физика элементарных частиц./ М.: Наука, 1984. И. Л. Бухбиндер/Теория струн и объединение фундаментальных взаимодействий/ Соросовский образовательный журнал №3, 1999г.
Слайд 29

Литература:

И. Л. Бухбиндер /Фундаментальные взаимодействия/Соросовский образовательный журнал, N 5, 1997 г. Стр. 66-73. Окунь Л.Б. /Физика элементарных частиц./ М.: Наука, 1984. И. Л. Бухбиндер/Теория струн и объединение фундаментальных взаимодействий/ Соросовский образовательный журнал №3, 1999г.

Список похожих презентаций

Фундаментальные взаимодействия

Фундаментальные взаимодействия

Основным признаком для деления элементарных частиц на группы является способность к фундаментальным взаимодействиям различного вида. Фундаментальные ...
Фундаментальные элементарные частицы

Фундаментальные элементарные частицы

Тест. 1.Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. ...
Экспериментальное исследование взаимодействия заряженных тел

Экспериментальное исследование взаимодействия заряженных тел

. Вид экспериментальной установки:. Зависимость силы Кулона от расстояния /одноимённые заряды/. Границы применимости закона Кулона. R = 0,8 см. Исследование ...
Силы взаимодействия молекул

Силы взаимодействия молекул

Цель урока: усвоить характерные особенности межмолекулярного взаимодействия. Задачи урока: А) Образовательные: Расширить и уточнить знания о взаимодействии ...
Организация творческого взаимодействия школьников при использовании проектного метода обучения

Организация творческого взаимодействия школьников при использовании проектного метода обучения

Появляются мультимодальные распределения, которые характерны не только для процессов познания. А.С. Макаренко писал: “Я не знаю, почему, но группа ...
Гравитационные взаимодействия

Гравитационные взаимодействия

Основной вопрос: Какими бы мы были, если не было бы гравитации?…. Вопросы учебной темы: Что такое вес? Невесомость, почему тела падают на Землю? Можно ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...

Конспекты

Сила – мера взаимодействия

Сила – мера взаимодействия

Разработка урока. Сила – мера взаимодействия. Тема. Сила – мера взаимодействия. . . Тип урока. : комбинированный. Цели урока. :. образовательные. ...
Законы взаимодействия тел

Законы взаимодействия тел

Конспект урока физики в 9 классе. по теме «Законы взаимодействия тел». Солдатова Вера Марковна,. . учитель физики. . МБОУ «СОШ №19 с УИОП». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 октября 2018
Категория:Физика
Содержит:29 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации