- СВЕРХПРОВОДИМОСТЬ

Презентация "СВЕРХПРОВОДИМОСТЬ" (10 класс) по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "СВЕРХПРОВОДИМОСТЬ" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Государственное образовательное учреждение лицей №1557 Зеленоградского административного округа г. Москвы. Презентация на тему: СВЕРХПРОВОДИМОСТЬ. Исполнитель: Бугакова Алевтина 10 «А» класс Преподаватель: Петунина Елена Александровна 2012
Слайд 1

Государственное образовательное учреждение лицей №1557 Зеленоградского административного округа г. Москвы

Презентация на тему: СВЕРХПРОВОДИМОСТЬ

Исполнитель: Бугакова Алевтина 10 «А» класс Преподаватель: Петунина Елена Александровна 2012

Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Камерлинг – Оннес - голландский физик. Пауль Друде Карл Людвиг — немецкий физик. Хендрик Антон Лоренц- голландский физик. Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости
Слайд 2

Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости.

Камерлинг – Оннес - голландский физик

Пауль Друде Карл Людвиг — немецкий физик

Хендрик Антон Лоренц- голландский физик

Академик В.Л. Гинзбург, нобелевский лауреат за работы по сверхпроводимости

Сверхпроводимость. Сверхпроводимость - свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк , характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических эл
Слайд 3

Сверхпроводимость

Сверхпроводимость - свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк , характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников.

В 1911 году голландский физик Камерлинг - Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Дру
Слайд 4

В 1911 году голландский физик Камерлинг - Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля.

Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.

Голландский физик Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя к
Слайд 5

Голландский физик Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах». В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012 К, самое высокое у ниобия — 9 К. Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие. До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах — ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.

Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпр
Слайд 6

Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Тэ(Мэ)1/2= const (изотопический эффект) Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.

Реакция сверхпроводников на примеси. Введение примеси в сверхпроводник уменьшает резкость перехода в сверхпроводящее состояние. В нормальных металлах ток исчезает примерно через 10-12 с. В сверхпроводнике ток, может циркулировать годами (теоретически 105 лет!).
Слайд 7

Реакция сверхпроводников на примеси

Введение примеси в сверхпроводник уменьшает резкость перехода в сверхпроводящее состояние. В нормальных металлах ток исчезает примерно через 10-12 с. В сверхпроводнике ток, может циркулировать годами (теоретически 105 лет!).

Физическая природа сверхпроводимости. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым. В 1986 году была открыта высокотем
Слайд 8

Физическая природа сверхпроводимости

Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Они были представлены в 1957 году американскими учеными Дж.Бардиным, Л.Купером, Дж.Шриффером и советским академиком Н.Н. Боголюбовым. В 1986 году была открыта высокотемпературная сверхпроводимость соединений лантана, бария и других элементов (Т= 1000К - это температура кипения жидкого азота).

Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом.
Слайд 9

Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году, т.е. полное вытеснение магнитного поля из материала при переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками Мейснером и Оксенфельдом.

Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках. По преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «магометовым гробом». Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжае
Слайд 10

Гроб Мухаммеда — опыт, демонстрирующий этот эффект в сверхпроводниках. По преданию, гроб с телом пророка Магомета висел в пространстве без всякой поддержки, поэтому этот опыт называют экспериментом с «магометовым гробом».

Отталкиваясь от неподвижного сверхпроводника, магнит всплывает сам и продолжает парить до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит обратной полярности точно такого же размера, что и вызывает левитацию.

Применение сверхпроводимости (СП-технологий) сегодня и завтра
Слайд 11

Применение сверхпроводимости (СП-технологий) сегодня и завтра

Сегодня. Перспективы практического применения сверхпроводимости были очевидны давно, но первые сверхпроводники требовали низких температур и могли проводить лишь небольшие токи; при превышении критической плотности тока сверхпроводимость разрушалась. Реальные применения сверхпроводимости стали возмо
Слайд 12

Сегодня

Перспективы практического применения сверхпроводимости были очевидны давно, но первые сверхпроводники требовали низких температур и могли проводить лишь небольшие токи; при превышении критической плотности тока сверхпроводимость разрушалась. Реальные применения сверхпроводимости стали возможными только после существенного прогресса в науке и технике – к 1970-м годам. Спектр применений сверхпроводников удобно разделить на относительно маломощную электронику (быстродействующие вычислительные устройства, детекторы магнитного поля и излучений, оборудование для связи в микроволновом диапазоне) и силовые применения (кабели, токоограничители, магниты, моторы, генераторы, накопители энергии).

В силовых применениях сверхпроводники позволяют снизить энергопотери и сократить массогабаритные показатели оборудования. Отсутствие электрического сопротивления позволяет использовать сверхпроводники для эффективной передачи электроэнергии. Замена медной обмотки в транформаторах на сверхпроводящие провода позволит уменьшить потери электроэнергии на 80-90% и снизить общую массу примерно в 2-3 раза. Исключение трансформаторного масла делает сверхпроводниковый трансформатор пожаробезопасным и экологически безупречным. Бóльшая устойчивость к работе при перегрузках позволит заменить традиционный трансформатор менее мощным сверхпроводниковым, а уменьшенное старение изоляции из-за низких рабочих температур и отсутствия температурных градиентов позволит увеличить время эксплуатации.

Будущее сверхпроводимости. Через 10-20 лет сверхпроводимость будет широко использоваться в энергетике, промышленности, на транспорте и гораздо шире в медицине и электронике. Внедрение СП-технологий приведет как к простой замене традиционного оборудования на более эффективное сверхпроводящее, так и к
Слайд 13

Будущее сверхпроводимости

Через 10-20 лет сверхпроводимость будет широко использоваться в энергетике, промышленности, на транспорте и гораздо шире в медицине и электронике. Внедрение СП-технологий приведет как к простой замене традиционного оборудования на более эффективное сверхпроводящее, так и к изменениям структурного характера и к появлению совершенно новых технологических нововведений. В электронике сверхпроводимость найдет широкое применение в компьютерных технологиях. Здесь сверхпроводящие элементы могут обеспечивать очень малые времена переключения, ничтожные потери мощности при использовании тонкопленочных элементов и большие объемные плотности монтажа схем. Потенциально наиболее выгодное промышленное применение сверхпроводимости связано с генерированием, передачей и эффективным использованием электроэнергии.

Например, по сверхпроводящему кабелю диаметром несколько сантиметров можно передавать столько же электроэнергии, как и по огромной сети ЛЭП, и при этом с очень малыми потерями. Более того, в связи с неизбежным изменением географии основных центров источников энергии (например, нефть/газ в районе шельфа и континентальной части Северного Ледовитого океана и Антарктиды, солнечная энергия – пустыни Африки и Австралии и т.д.), сопровождаемым отдалением от основных центров потребления, проблема повышения передаваемой мощности на большие расстояния при минимизации потерь становится всё более актуальной.

Сверхпроводниковые технологии чрезвычайно привлекательны для применения на флоте – как гражданском, так и военном. Сверхпроводниковые приводы и генераторы отличаются высокой компактностью при массе в 2-3 раза меньшей, чем у традиционных аналогов и обладают высокой тягой даже на низких оборотах. Отка
Слайд 14

Сверхпроводниковые технологии чрезвычайно привлекательны для применения на флоте – как гражданском, так и военном. Сверхпроводниковые приводы и генераторы отличаются высокой компактностью при массе в 2-3 раза меньшей, чем у традиционных аналогов и обладают высокой тягой даже на низких оборотах. Отказ от механических редукторов и переход к прямому приводу гребного винта электродвигателем существенно поднимает КПД силовой установки. Уровень вибраций и шумов также значительно ниже, что важно не только для военных применений, но и для круизных лайнеров и рыболовецких судов. С развитием СП-технологий сверхпроводящие двигатели найдут широкое применение также и в самолетах и на автомобильном транспорте. Инженеры давно уже задумывались о том, как можно было бы использовать огромные магнитные поля, создаваемые с помощью сверхпроводников, для магнитной подвески поезда (магнитной левитации). За счет сил взаимного отталкивания между движущимся магнитом и током, индуцируемым в направляющем проводнике, поезд двигался бы плавно, без шума и трения и был бы способен развивать очень большую скорость.

Единственная в мире действующая пассажирская магнитно-левитационная (но не сверхпроводящая) железнодорожная линия протяженностью 30,5 км расположена в Китае. Строительство сверхпроводящей железной дороги запланировано в Японии. Предполагается, что линия длиной 290 км соединит Токио и район в центральной Японии. Используемая технология подразумевает использование электродинамической подвески на сверхпроводящих магнитах, установленных как на поезде, так и на трассе. Тестовые испытания были успешно проведены еще в 2003 г., в их ходе был поставлен мировой рекорд скорости передвижения поезда (581 км/час). Ожидается, что дорога будет введена в эксплуатацию к 2020 г.

В перспективе возможны проекты совместной прокладки криотрубопроводов и железных дорог. Возможность ускорения макроскопических объектов электромагнитным полем найдет свое применение также на аэродромах и космодромах, где СП-магниты будут обеспечивать взлет/посадку воздушным судам и космическим кораблям. Рассматриваются также возможности применения сверхпроводящих магнитов для аккумулирования электроэнергии в магнитной гидродинамике и для производства термоядерной энергии (токамаки). Данные технологии, как известно, способны кардинальным образом изменить облик мировой энергетической системы.

Используемые ресурсы: http://www.superox.ru/application_superconductivity.htm Применение сверхпроводников http://class-fizika.narod.ru/10_9.htm http://www.physbook.ru/ http://ru.wikipedia.org/wiki/%D1%E2%E5%F0%F5%EF%F0%EE%E2%EE%E4%E8%EC%EE%F1%F2%FC Сверхпроводимость http://www.krugosvet.ru/node/3898
Слайд 15

Используемые ресурсы:

http://www.superox.ru/application_superconductivity.htm Применение сверхпроводников http://class-fizika.narod.ru/10_9.htm http://www.physbook.ru/ http://ru.wikipedia.org/wiki/%D1%E2%E5%F0%F5%EF%F0%EE%E2%EE%E4%E8%EC%EE%F1%F2%FC Сверхпроводимость http://www.krugosvet.ru/node/38982 Сверхпроводимость

Список похожих презентаций

Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
Атомная физика

Атомная физика

СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. Опыт Резерфорда. Определение размеров. атомного ядра Планетарная модель атома. Планетарная модель ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:17 сентября 2018
Категория:Физика
Классы:
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации