- Процесс многократного рассеяния

Презентация "Процесс многократного рассеяния" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Процесс многократного рассеяния" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Лекция 5. Упругое рассеяние частиц на ядрах Сопоставление рассеяние тяжелой частицы на электроне и на ядре Процесс многократного рассеяния в слое вещества Оценка среднего значения квадрата угла рассеяния Среднеквадратичный угол многократного рассеяния Движение заряженных частиц в магнитном поле Влия
Слайд 1

Лекция 5

Упругое рассеяние частиц на ядрах Сопоставление рассеяние тяжелой частицы на электроне и на ядре Процесс многократного рассеяния в слое вещества Оценка среднего значения квадрата угла рассеяния Среднеквадратичный угол многократного рассеяния Движение заряженных частиц в магнитном поле Влияние многократного рассеяния

«Процесс многократного рассеяния»

Упругое рассеяние частиц на ядрах. Z1 + Z2  Z1 + Z2. Отдельное столкновение частицы Z1 с тяжелым ядром Z2 вызывает небольшое рассеяние (угол θ). На толщине х постепенно накапливается заметное отклонение от первоначального направления движения за счет повторных процессов рассеяния (многократное расс
Слайд 2

Упругое рассеяние частиц на ядрах

Z1 + Z2  Z1 + Z2

Отдельное столкновение частицы Z1 с тяжелым ядром Z2 вызывает небольшое рассеяние (угол θ). На толщине х постепенно накапливается заметное отклонение от первоначального направления движения за счет повторных процессов рассеяния (многократное рассеяние).

Сопоставим упругое взаимодействие тяжелой частицы Z1 на электроне (me) и на ядре (Z2, M2). Определим, какая из частиц получит большую энергию от частицы Z1: электрон (ΔΤе) или ядро (ΔΤ2). Где потеря энергии больше ?

Прохождение заряженной частицы Z1 через вещество сопровождается электромагнитным взаимодействием не только с электронами среды, но также происходит упругое рассеяние на ядрах

ядро вещества мишени

Упругое рассеяние тяжелой частицы на электроне и на ядре. Сопоставим упругое взаимодействие тяжелой частицы Z1 на электроне (me) и на ядре (Z2, M2). Определим, какая из частиц получит большую энергию от частицы Z1: электрон (ΔΤе) или ядро (ΔΤ2). частица Z1 пролетает мимо электрона и ядра с одинаковы
Слайд 3

Упругое рассеяние тяжелой частицы на электроне и на ядре

Сопоставим упругое взаимодействие тяжелой частицы Z1 на электроне (me) и на ядре (Z2, M2). Определим, какая из частиц получит большую энергию от частицы Z1: электрон (ΔΤе) или ядро (ΔΤ2).

частица Z1 пролетает мимо электрона и ядра с одинаковым прицельным параметром ρ и с одинаковой скоростью V1

Упругого рассеяния тяжелой частицы на электроне и на ядре
Слайд 4

Упругого рассеяния тяжелой частицы на электроне и на ядре

Процесс многократного рассеяния в слое вещества. Частица, проходя толстый слой, не должна заметно терять энергию: T1(x =0) ≈ T1(x). Импульс частицы р1 при этом остается практически постоянным по глубине. Это ограничивает верхнее значение толщины вещества и применимость используемых приближений. Сумм
Слайд 5

Процесс многократного рассеяния в слое вещества

Частица, проходя толстый слой, не должна заметно терять энергию: T1(x =0) ≈ T1(x). Импульс частицы р1 при этом остается практически постоянным по глубине. Это ограничивает верхнее значение толщины вещества и применимость используемых приближений.

Суммарный угол θ =Σ θi, где θi – рассеяние в i-ом взаимодействии, не может служить мерой рассеяния. Его величина, с учетом знака углов отклонений θi, равна нулю.

Принято оценивать квадратичный угол: = Σ θi2

Для учета взаимодействия частицы Z1 с отдельным ядром i можно использовать формулу Резерфорда

Условия расчета:

Оценка среднего значения квадрата угла рассеяния. Для отдельного столкновения с ядром. Расчет в приближении малых углов - в расчетах взято . Значения предельных углов связаны с размерами ядра (Rяд) и атома (Rат) и зависят от материала вещества-мишени
Слайд 6

Оценка среднего значения квадрата угла рассеяния

Для отдельного столкновения с ядром

Расчет в приближении малых углов - в расчетах взято .

Значения предельных углов связаны с размерами ядра (Rяд) и атома (Rат) и зависят от материала вещества-мишени

Среднеквадратичный угол многократного рассеяния. Суммарный среднеквадратичный угол многократного рассеяния получается как сумма значений по полному числу отдельных i независимых столкновений m на толщине х. m = σ·n·x. σ(см2) – полное резерфордовское сечение рассеяния n(1/cм3) – концентрация ядер миш
Слайд 7

Среднеквадратичный угол многократного рассеяния

Суммарный среднеквадратичный угол многократного рассеяния получается как сумма значений по полному числу отдельных i независимых столкновений m на толщине х.

m = σ·n·x

σ(см2) – полное резерфордовское сечение рассеяния n(1/cм3) – концентрация ядер мишени Х (см) – толщина мишени

Получается функциональная зависимость вида:

Заряженная частица (Z1), движущаяся с импульсом р1 (скорость v1) через вещество толщиной х, приобретает среднеквадратичный угол

Точные расчеты дают подобную зависимость:

L - длина взаимодействия

Движение заряженных частиц в магнитном поле. Заряженная частица q с импульсом р1, попадает в однородное магнитное поле перпендикулярно вектору Н. Частица будет двигаться равномерно по окружности с радиусом R. На эту частицу действует сила Лоренца (запись в системе единиц CGSE) и центростремительная
Слайд 8

Движение заряженных частиц в магнитном поле

Заряженная частица q с импульсом р1, попадает в однородное магнитное поле перпендикулярно вектору Н. Частица будет двигаться равномерно по окружности с радиусом R. На эту частицу действует сила Лоренца (запись в системе единиц CGSE) и центростремительная сила

Их равенство позволяет вычислить величину радиуса вращения в магнитном поле

Эта запись справедлива и для релятивистского случая

Получаем:

Влияние многократного рассеяния. Пусть, например заряженная частица попадает в магнитный спектрометр (заполненный веществом) и проходит расстояние d перпендикулярно направлению поля Н по дуге окружности. При этом она поворачивается на угол. На толщине спектрометра d отношение угла многократного расс
Слайд 9

Влияние многократного рассеяния

Пусть, например заряженная частица попадает в магнитный спектрометр (заполненный веществом) и проходит расстояние d перпендикулярно направлению поля Н по дуге окружности. При этом она поворачивается на угол

На толщине спектрометра d отношение угла многократного рассеяния к углу поворота в магнитном поле запишется в виде

Скорость частицы выражается через импульс

При определенных сочетаниях параметров частицы, поля и характеристик среды искажающее влияние многократного рассеяния может быть минимизировано.

Список похожих презентаций

Процесс электризации тел

Процесс электризации тел

Вам знакомо это?? Что это такое?? Электризация тел. Два рода электрических зарядов. Девиз урока:. Выбирай, кого хочешь. Спрашивай кого хочешь, но ...
Процесс теплообмена

Процесс теплообмена

Что такое теплообмен? Теплообмен(или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом. Теплопередача ...
Процесс Пуассона как универсальный вероятностный процесс для описания изменения параметров в системах взаимодействующих частиц

Процесс Пуассона как универсальный вероятностный процесс для описания изменения параметров в системах взаимодействующих частиц

Составные части дальнейшего. 2. Является ли «Прикладная физика» научной специальностью ? 1. «Законно» ли существование кафедр прикладной физики в ...
Процесс кипения

Процесс кипения

Цель урока:. Познакомиться со вторым процессом парообразования - кипением и его особенностями. Как происходит процесс кипения ? Изменяется ли температура ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Квантовая физика

Квантовая физика

П Л А Н 1. СТО А. Эйнштейна. 2. Тепловое излучение. 3. Фотоэффект. 4. Люминесценция. 5. Химическое действие света. 6. Световое давление. 7. Физический ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
«Давление твёрдых тел» физика

«Давление твёрдых тел» физика

Физический диктант. Обозначение площади – Единица площади – Площадь прямоугольника – Обозначение силы – Единица силы – Формула силы тяжести – Обозначение ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 июля 2019
Категория:Физика
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации