Презентация "Время в физике" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38

Презентацию на тему "Время в физике" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 38 слайд(ов).

Слайды презентации

Введение в физику с неньютоновым временем. На основе холистского системного принципа единства синтеза и анализа рассмотрено обобщение равновесной и линейной области неравновесной термодинамики с введением неньютонова времени и реализовано активное включение обобщенной термодинамики в структуру фунда
Слайд 1

Введение в физику с неньютоновым временем

На основе холистского системного принципа единства синтеза и анализа рассмотрено обобщение равновесной и линейной области неравновесной термодинамики с введением неньютонова времени и реализовано активное включение обобщенной термодинамики в структуру фундаментальной и прикладной физики. Литература: В.П. Майков. Расширенная версия классической термодинамики — физика дискретного пространства-времени. МГУИЭ, Москва (1997). Cайт: «Физика неньютонова времени» maikov.chat. ru

К методологическим особенностям. Гипотеза о переопределении пост. Больцмана до макрокванта энтропии и, как следствие, рассмотрение физики четырех мировых констант вместо используемых сегодня трех. Получение на этой основе элементарного термодинамического объема вместо точки, и отказ от дифференциаль
Слайд 2

К методологическим особенностям

Гипотеза о переопределении пост. Больцмана до макрокванта энтропии и, как следствие, рассмотрение физики четырех мировых констант вместо используемых сегодня трех. Получение на этой основе элементарного термодинамического объема вместо точки, и отказ от дифференциально малых величин. Переход к дискретным, физически предельно малым параметрам (макроквантование). Появление дискретного времени. Исчезновение в теории калибровочных полей и перенормировок. Описание непроявленных состояний как частный случай проявленных. Двухуровневый физический вакуум и др.

Дискретное время. Исходная гипотеза: энтропия квантована. Квант энтропии равен постоянной Больцмана – k. Из соотношения неопределенностей КМ энергия-время при E=kT получаем макроскопически элементарный интервал времени (Например, при Т=300K, При фиксированной температуре обе неопределенности извест
Слайд 3

Дискретное время

Исходная гипотеза: энтропия квантована. Квант энтропии равен постоянной Больцмана – k. Из соотношения неопределенностей КМ энергия-время при E=kT получаем макроскопически элементарный интервал времени (Например, при Т=300K, При фиксированной температуре обе неопределенности известны, т.е принцип дополнительности КМ в обобщенной термодинамике не реализуется.

Термодинамическая элементарная ячейка вместо точки. Макроскопическая ячейка – основной элемент теории. Из соотношения неопределенностей импульс-координата при а также имеем Макроскопически элементарный радиус макроячейки r=ct (приТ=300K, r=3,8 мкм.) Тогда минимальный макроскопический, или максималь
Слайд 4

Термодинамическая элементарная ячейка вместо точки

Макроскопическая ячейка – основной элемент теории. Из соотношения неопределенностей импульс-координата при а также имеем Макроскопически элементарный радиус макроячейки r=ct (приТ=300K, r=3,8 мкм.) Тогда минимальный макроскопический, или максимальный микроскопический термодинамический объём (макроячейка) составит: Объем макроячейки зависит только от термодинамической температуры.

Примеры неопределенности. Квант механической энергии Макроквант тепловой энергии Макроквант энтропии Макроквант (дискрет) времени Известно: В дискретном варианте:
Слайд 5

Примеры неопределенности

Квант механической энергии Макроквант тепловой энергии Макроквант энтропии Макроквант (дискрет) времени Известно: В дискретном варианте:

Процедура макроквантования. Нелокальная версия термодинамики (НВТ) позволяет вычислять предельно малые величины -- макроквантование (см.предыдущий слайд). Для перехода к макроквантованию используются, как правило, фундаментальные дифференциальные закономерности. Как свидетельствует практика НВТ, пре
Слайд 6

Процедура макроквантования

Нелокальная версия термодинамики (НВТ) позволяет вычислять предельно малые величины -- макроквантование (см.предыдущий слайд). Для перехода к макроквантованию используются, как правило, фундаментальные дифференциальные закономерности. Как свидетельствует практика НВТ, прерывание процедуры макроквантования может служить сигналом о методологической или теоретической ошибке. Последнее может указывать, что Код Природы «записан» на языке обобщенной термодинамики.

Термодинамическая иерархия. Наблюдаемая субстанция Вещественная среда в четырех агрегатных состояниях. Ненаблюдаемая субстанция 2. Времениподобный, светоносный, физический вакуум. 3.Пространственноподобный, дальнодействующий, физический вакуум. 4. Две сингулярности с нулевой метрикой Минковского
Слайд 7

Термодинамическая иерархия

Наблюдаемая субстанция Вещественная среда в четырех агрегатных состояниях. Ненаблюдаемая субстанция 2. Времениподобный, светоносный, физический вакуум. 3.Пространственноподобный, дальнодействующий, физический вакуум. 4. Две сингулярности с нулевой метрикой Минковского

Страты макроскопической ячейки. Элементарный термодинамический цикл Карно, в котором разностью температур выступает квантовое рассеяние абсолютной температуры . Элементарный объемный резонатор, без привлечения калибровочных полей и без первичных расходимостей. Суперсимметричная система с совместным
Слайд 8

Страты макроскопической ячейки

Элементарный термодинамический цикл Карно, в котором разностью температур выступает квантовое рассеяние абсолютной температуры . Элементарный объемный резонатор, без привлечения калибровочных полей и без первичных расходимостей. Суперсимметричная система с совместным рассмотрением бозонов и фермионов.

Природа необратимости времени. Элементарный цикл Карно Необратимость времени связана со слабым нарушением супер- симметричного цикла за счет явления гравитации. Иначе, в элементарном цикле Карно нарушается параллель- ность изотерм (проявляется геометрия Лобачевского !).
Слайд 9

Природа необратимости времени

Элементарный цикл Карно Необратимость времени связана со слабым нарушением супер- симметричного цикла за счет явления гравитации. Иначе, в элементарном цикле Карно нарушается параллель- ность изотерм (проявляется геометрия Лобачевского !).

Существуют ли калибровочные поля в нелокальной термодинамике? В элементарной ячейке НВТ силовые злектромагнитные поля симметричны, т.е. В уравнениях Максвелла Это позволяет отказаться от нефизических калибровоч- ных полей и ведет к отсутствию расходимостей в теории. Отсутствие расходимостей – основн
Слайд 10

Существуют ли калибровочные поля в нелокальной термодинамике?

В элементарной ячейке НВТ силовые злектромагнитные поля симметричны,

т.е

В уравнениях Максвелла Это позволяет отказаться от нефизических калибровоч- ных полей и ведет к отсутствию расходимостей в теории.

Отсутствие расходимостей – основная предпосылка для непротиворечивого введения квантовой гравитации.

Существуют ли магнитные монополи? НВТ прогнозирует: Электрический объемный заряд Магнитный векторный монополь, где коллективная скорость частиц в макроячейке................................ Отношение зарядов....................... То же для вакуума........................... Последнее отношение позв
Слайд 11

Существуют ли магнитные монополи?

НВТ прогнозирует:

Электрический объемный заряд Магнитный векторный монополь, где коллективная скорость частиц в макроячейке................................ Отношение зарядов....................... То же для вакуума........................... Последнее отношение позволяет ответить на вопрос, почему скорость света физически нельзя складывать со скоростью источника света и др.

Пример верификации теории. Косвенная: через раскрытие физики постоянной тонкой структуры Прямая: вычисление отношения фундаментальных зарядов, известного в физике только экспериментально. Эксперимент*): *) Физ. энцикл. Т.1. 1988. С.234.
Слайд 12

Пример верификации теории

Косвенная: через раскрытие физики постоянной тонкой структуры Прямая: вычисление отношения фундаментальных зарядов, известного в физике только экспериментально

Эксперимент*): *) Физ. энцикл. Т.1. 1988. С.234.

Физика константы скорости. В нелокальной версии термодинамики Из этого отношения следует: Константа скорости в физике лишь по формальным соображениям размерности является «скоростью». В действительности это фундаментальная постоянная пространственно- временной метрики физического времениподобного ва
Слайд 13

Физика константы скорости

В нелокальной версии термодинамики Из этого отношения следует: Константа скорости в физике лишь по формальным соображениям размерности является «скоростью». В действительности это фундаментальная постоянная пространственно- временной метрики физического времениподобного вакуума. Независимость с=const от скорости источника света. Почти классическое дальнодействие при с=const. Ошибочность эйнштейновского принципа относительности одновременности ( фантазии о путешествии во времени).

Контрольные вопросы к пройденному материалу. Системный анализ и НВТ. Минимальный термодинамический масштаб. Сущность макроквантования. Физика константы скорости. Методологические особенности НВТ. О перенормируемости физических теорий Верификация теории.
Слайд 14

Контрольные вопросы к пройденному материалу

Системный анализ и НВТ. Минимальный термодинамический масштаб. Сущность макроквантования. Физика константы скорости. Методологические особенности НВТ. О перенормируемости физических теорий Верификация теории.

Из векторного анализа. В электродинамике широко используются производные от векторных функций дивиргенция При шаровой симметрии Тогда в электродинамике доказывается, что
Слайд 15

Из векторного анализа

В электродинамике широко используются производные от векторных функций дивиргенция При шаровой симметрии Тогда в электродинамике доказывается, что

Массаотдача. Уравнение сохранение массы Для сферических коорднат В дискретной форме где Откуда где
Слайд 16

Массаотдача

Уравнение сохранение массы Для сферических коорднат В дискретной форме где Откуда где

Особенности ур. массобмена. Движущая сила по умолчанию (химич. потенциал) Ур.прямого действия (без коэф. массообмена) Расчет на основании табулированных параметров Массообмен с минимумом производства энтропии Легкость формулирования термоодинамического КПД на основании плотности потока массы
Слайд 17

Особенности ур. массобмена

Движущая сила по умолчанию (химич. потенциал) Ур.прямого действия (без коэф. массообмена) Расчет на основании табулированных параметров Массообмен с минимумом производства энтропии Легкость формулирования термоодинамического КПД на основании плотности потока массы

Глобальные проблемы экологии и НВТ. НВТ устанавливает единство законов эволюции в физике и биологии (см. слайд «Два закона эволюции») НВТ рассматривает все необратимые процессы только вблизи равновесного состояния, т.е. с минимумом производства энтропии Это означает, что теория НВТ изначально ориент
Слайд 18

Глобальные проблемы экологии и НВТ

НВТ устанавливает единство законов эволюции в физике и биологии (см. слайд «Два закона эволюции») НВТ рассматривает все необратимые процессы только вблизи равновесного состояния, т.е. с минимумом производства энтропии Это означает, что теория НВТ изначально ориентирована на энергосбережение

Два физических закона эволюции. Первый - результирующий, квантово-релятиви- стский закон понижения энтропии, определяющий «стрелу времени» в обобщенной термодинамике (аналог биологической эволюции Ч. Дарвина). Второй – классический, диссипативный закон повышения энтропии (второе начало классической
Слайд 19

Два физических закона эволюции

Первый - результирующий, квантово-релятиви- стский закон понижения энтропии, определяющий «стрелу времени» в обобщенной термодинамике (аналог биологической эволюции Ч. Дарвина). Второй – классический, диссипативный закон повышения энтропии (второе начало классической термодинамики). Результирующая «стрела времени» направлена на понижение энтропии.

Последовательность введения и рассмотрения квантовой гравитации. 1.Доказательство существования в макроячейке равных по величине гравитационных зарядов двух знаков очень большой массы (ур. Пуассона). 2.Формулирование аналога принципа эквивалентности ОТО: инерционная масса термодинамич. ячейки порожд
Слайд 20

Последовательность введения и рассмотрения квантовой гравитации

1.Доказательство существования в макроячейке равных по величине гравитационных зарядов двух знаков очень большой массы (ур. Пуассона). 2.Формулирование аналога принципа эквивалентности ОТО: инерционная масса термодинамич. ячейки порождена положительной разностью двух гравитационных зарядов (вторая гипотеза НВТ). 3. Привлечение метрики Минковского приводит к виртуальной массе бозонных и фермионных гравитонов и рассмотрению особенностей времениподобной, пространственноподобной и нулевой метрик.

Термодинамическое квантово-релятивистское определение времени. Физическое время – осредненная, интегративная, мера изменчивости, порождаемая квантово-релятивистской природой фундаментального элементарно- го термодинамического уровня материи, где время необратимо, дискретно, неоднородно, иерархично,
Слайд 21

Термодинамическое квантово-релятивистское определение времени

Физическое время – осредненная, интегративная, мера изменчивости, порождаемая квантово-релятивистской природой фундаментального элементарно- го термодинамического уровня материи, где время необратимо, дискретно, неоднородно, иерархично, динамичеcки-эволюционно и циклично. Учитывая вечную эволюцию метрики, заключаем: «В любое место нельзя ступить дважды...»

Квантово-релятивистская термодинамическая космология. Майков Виктор Павлович, д.т.н., проф Московский государственный университет инженерной экологии Введение в структуру современной фунда- ментальной физики недостающего элементарного макроскопического уровня обобщенной термодинамики приводит к ново
Слайд 22

Квантово-релятивистская термодинамическая космология

Майков Виктор Павлович, д.т.н., проф Московский государственный университет инженерной экологии Введение в структуру современной фунда- ментальной физики недостающего элементарного макроскопического уровня обобщенной термодинамики приводит к новой области физики – термодинамической космологии. Литература: В.П. Майков. Расширенная версия классической термодинамики — физика дискретного пространства-времени. МГУИЭ, Москва (1997).

Аналог принципа эквивалентности ОТО. Гравитационные заряды макроячейки (поспе использования ур. Пуассона) : Например, при Т=300К величина (скрытая масса) Аналог принципа эквивалентности гравитационной и инерционной массы (гипотеза о происхождении массы макроячейки - m) откуда
Слайд 23

Аналог принципа эквивалентности ОТО

Гравитационные заряды макроячейки (поспе использования ур. Пуассона) : Например, при Т=300К величина (скрытая масса) Аналог принципа эквивалентности гравитационной и инерционной массы (гипотеза о происхождении массы макроячейки - m) откуда

Метрика Минковского. Времениподобная: (фермионные гравитоны), порождает силы инерции, «пятую силу». Пространственноподобная: (бозонные гравитоны), порождает дальнодействие, нелокальность, слабое взаимодействие, многомирие. R – радиус вакуумного горизонта событий, или радиус термодинамического окруже
Слайд 24

Метрика Минковского

Времениподобная: (фермионные гравитоны), порождает силы инерции, «пятую силу». Пространственноподобная: (бозонные гравитоны), порождает дальнодействие, нелокальность, слабое взаимодействие, многомирие. R – радиус вакуумного горизонта событий, или радиус термодинамического окружения макроячейки,четвертая пространственная координата. Нулевая: порождает два предельных сингулярных непроявленных состояний: Вакуумное высокотемпературное состояние с планковкими масштабами, «белая дыра». Вещественное низкотемпературное чернотельное состояние, «черная дыра».

Времениподобная метрика и «пятая сила». Порождает виртуальные фермионные гравитоны с массой со скоростью взаимодействия Например, для воды при нормальной температуре Метрика ответственна за проявление сил инерции- «пятая сила» , а также за связь гра-витации с электромагнитодинамикой.
Слайд 25

Времениподобная метрика и «пятая сила»

Порождает виртуальные фермионные гравитоны с массой со скоростью взаимодействия Например, для воды при нормальной температуре Метрика ответственна за проявление сил инерции- «пятая сила» , а также за связь гра-витации с электромагнитодинамикой.

Пространственноподобная метрика и дальнодействие. Порождает бозе-гравитационное возмущение температуры и дальнодействующие гравитоны образуя пространственноподобное вакуумное окружение макроячейки с горизонтом событий четвертая пространственная координата Дальнодействие связано со свойствами метрики
Слайд 26

Пространственноподобная метрика и дальнодействие

Порождает бозе-гравитационное возмущение температуры и дальнодействующие гравитоны образуя пространственноподобное вакуумное окружение макроячейки с горизонтом событий четвертая пространственная координата Дальнодействие связано со свойствами метрики, а не с превышением скорости света.

Нулевая метрика. Порождает два особых предельных, сингулярных, состояний, в которых радиус макроячейки равен радиусу горизонта событий. Высокотемпературная вакуумная сингулярность, известная как планковский масштаб, а также как «мини-черная дыра», «белая дыра» - локальное начало эволюции материально
Слайд 27

Нулевая метрика

Порождает два особых предельных, сингулярных, состояний, в которых радиус макроячейки равен радиусу горизонта событий. Высокотемпературная вакуумная сингулярность, известная как планковский масштаб, а также как «мини-черная дыра», «белая дыра» - локальное начало эволюции материальной среды из высокотемпературной области с локальным явлением «Большого взрыва», принимаемое физикой за абсолютное « начало» Мира. Низкотемпературная вещественная сингулярность, известная как «макро-черная дыра»- предельное локальное состояние эволюции вещественной среды в низкотемпературной области.

КМ и обобщённая термодинамика (К проблеме интерпретации квантовой механики). КМ – приближенная модельная система для описания элементарного метастабильного состояния без участия квантовой гравитации. Минимальная макроскопическая термодинамическая ячейка есть максимальный микроскопический объем КМ. О
Слайд 28

КМ и обобщённая термодинамика (К проблеме интерпретации квантовой механики)

КМ – приближенная модельная система для описания элементарного метастабильного состояния без участия квантовой гравитации. Минимальная макроскопическая термодинамическая ячейка есть максимальный микроскопический объем КМ. Однако термод. ячейка – макроквантовая, релятивистская. Ячейка КМ – микроскопическая, только механическая. Вывод: проблемы необратимости времени, «коллапса волновой функции», нелокальности, (дальнодействия), квантовых корреляций, многомирия, планковских масштабов и мн. другие проблемы необходимо обсуж- дать и решать в рамках обобщенной термодинамики.

Относительна ли одновременность? Дальнодействие. В обобщенной термодинамике физический смысл фундаментальной константы скорости в пространственно-временном вакууме принципиально меняется. Последняя выступает как константа физического вакуума в форме отношения двух фундаментальных зарядов, а также ка
Слайд 29

Относительна ли одновременность? Дальнодействие

В обобщенной термодинамике физический смысл фундаментальной константы скорости в пространственно-временном вакууме принципиально меняется. Последняя выступает как константа физического вакуума в форме отношения двух фундаментальных зарядов, а также как характеристика дискретной пространственно-временной метрики В пространственноподобной метрике дискретные величины и космологически огромны, и дальнодействие определяется не константой «скорости» с а, величиной дискрета времени

Уточненный планковский масштаб (вакуумная сингулярность). Планковский радиус Термодинамическая температура. Планковская масса= массе фотона = массе гравитона. Величины электромагнитного, гравитационного из- лучения и давления фотонного газа равны: т.е. имеет место аналитическое объединение электрома
Слайд 30

Уточненный планковский масштаб (вакуумная сингулярность)

Планковский радиус Термодинамическая температура

Планковская масса= массе фотона = массе гравитона

Величины электромагнитного, гравитационного из- лучения и давления фотонного газа равны: т.е. имеет место аналитическое объединение электромагнитного и гравитационного взаимодействий

Сравнение электромагнитного и гравитационного излучения. Электромагнитное когерентное излучение Гравитационное излучение Их отношение по величине Для Солнца (оценка ОТО Для планковского масштаба в НВТ (точно)
Слайд 31

Сравнение электромагнитного и гравитационного излучения

Электромагнитное когерентное излучение Гравитационное излучение Их отношение по величине Для Солнца (оценка ОТО Для планковского масштаба в НВТ (точно)

«Происхождение» фундаментальных констант. Определены через (Подстрочные индексы сингулярности опущены) Фундаментальный параметр метрики («скорость» света) Гравитационная постоянная Постоянная Больцмана Постоянная Планка Это означает, что система основных единиц СИ в физике может быть, по- видимому,
Слайд 32

«Происхождение» фундаментальных констант

Определены через (Подстрочные индексы сингулярности опущены) Фундаментальный параметр метрики («скорость» света) Гравитационная постоянная Постоянная Больцмана Постоянная Планка Это означает, что система основных единиц СИ в физике может быть, по- видимому, сведена к четырем параметрам.

Черные дыры ( критическая стадия). Температура...... Масса........... Плотность...... Дискрет времени..... Радиус «гравитационный»... Квант скорости.......... Планковский радиус !....
Слайд 33

Черные дыры ( критическая стадия)

Температура...... Масса........... Плотность......

Дискрет времени.....

Радиус «гравитационный»... Квант скорости.......... Планковский радиус !....

Космологическая «постоянная» теории относительности. Согласо ОТО плотность энергии вакуума Согласно НВТ Из этих соотношений следут значение космологической «постоянной»: где радиус элементарной ячейки т.е значение параметра полностью определяется гауссовой кривизной пространства.
Слайд 34

Космологическая «постоянная» теории относительности

Согласо ОТО плотность энергии вакуума Согласно НВТ Из этих соотношений следут значение космологической «постоянной»: где радиус элементарной ячейки т.е значение параметра полностью определяется гауссовой кривизной пространства.

К проблеме верификации квантовой гравитации. Согласно современной теоретической физике время жизни протона составляет Косвенный эксперимент : Первая попытка: Вторая попытка: Обобщенная термодинамика дает:
Слайд 35

К проблеме верификации квантовой гравитации

Согласно современной теоретической физике время жизни протона составляет Косвенный эксперимент : Первая попытка: Вторая попытка: Обобщенная термодинамика дает:

Фрагменты термодинамической «Картины Мира». Вселенная - вечно расширяющаяся система физического вакуума в области с относительно ничтожно малым вещественным ядром (метагалактикой). Метагалактика – космологически стационарная, постоянно локально обновляемая, в основном вещественная подсистема с метаг
Слайд 36

Фрагменты термодинамической «Картины Мира»

Вселенная - вечно расширяющаяся система физического вакуума в области с относительно ничтожно малым вещественным ядром (метагалактикой). Метагалактика – космологически стационарная, постоянно локально обновляемая, в основном вещественная подсистема с метагалактическим циклом для отдельных обновляемых элементов подсистемы (галактик). Стадии цикла: высокотемпературная сингулярность – эволюция материальной среды с понижением температуры и энтропии – низкотемпературная сингулярность – диссипативный фазовый переход, переводящий элементы подсистемы вновь к высокотемпературной сингулярности. Размеры всей Вселенной определяются потенциальной бесконечностью (см. далее).

Метагалактический цикл. Период метагалактического цикла существования отдельных галактик между двумя сингулярностями: Верхняя оценка радиуса Метагалактики с «реликтовым» излучением составляет Текущий радиус Вселенной определяется потенциальной бесконечностью при .
Слайд 37

Метагалактический цикл

Период метагалактического цикла существования отдельных галактик между двумя сингулярностями:

Верхняя оценка радиуса Метагалактики с «реликтовым» излучением составляет Текущий радиус Вселенной определяется потенциальной бесконечностью при .

Некоторые другие особенности НВТ. Выход: в квантовую механику, наномасштабы, «многомирие»; синергетику; биофизику (физику жизни). Отсутствие: наблюдателя в структуре теории, антропного принципа, причинно- следственных связей на микро- и мега-уровнях, принципа «одновременности» частицы и волны в диск
Слайд 38

Некоторые другие особенности НВТ

Выход: в квантовую механику, наномасштабы, «многомирие»; синергетику; биофизику (физику жизни). Отсутствие: наблюдателя в структуре теории, антропного принципа, причинно- следственных связей на микро- и мега-уровнях, принципа «одновременности» частицы и волны в дискретной интерпретации НВТ, абсолютно точных законов сохранения в локальных теориях (некорректность теоремы Нетер) и др.

Список похожих презентаций

Web-сайт по физике и внеклассной работе

Web-сайт по физике и внеклассной работе

Тема сайта. Личный сайт учителя физики и заместителя директора по УВР Щербаковой Ольги Анатольевны МОУ "Александровская СОШ", Саракташского района, ...
Мой прибор по физике

Мой прибор по физике

Самая лучшая рекомендация начинающему изобретателю. Всматривайтесь в привычное – и вы увидите неожиданное. Всматривайтесь в некрасивое – и увидите ...
Статика в физике

Статика в физике

Это раздел механики, в котором изучается условия равновесия абсолютно твердых тел. В статике учитываются размеры и формы тел и все рассматриваемые ...
урок по физике

урок по физике

Теоретическая механика. 1 2 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29. Основные понятия и аксиомы статики. Системы сил и условия ...
Применение производной в физике

Применение производной в физике

Цель урока. Учиться решать задачи по физике методом дифференциального исчисления. План урока. 1. Повторение: определение производной, геометрический ...
Решение экспериментальных задач по физике

Решение экспериментальных задач по физике

Эпиграф: «Опыт ценнее тысячи мнений, рожденных воображением» М.В Ломоносов. Цель: развивать умение применять полученные знания на практике, сформировать ...
Викторина по физике

Викторина по физике

Здравствуйте!. Сегодня мы предлагаем вам поиграть в викторину, которая называется «Мы и мир вокруг нас». Она позволит вам проверить то, насколько ...
Подготовка к ЕГЭ по физике

Подготовка к ЕГЭ по физике

Базовый теоретический курс. Физические основы механики Молекулярная физика и термодинамика Электродинамика и магнитное поле Колебания и электромагнитные ...
Векторы силы в физике

Векторы силы в физике

1 Н F1 F = F2 – F1  F = =. 1. 3. 4. 5. 6. F = F2 – F1  F = 2Н -0,5 Н = 1,5Н. F F = F2 + F1  F = =. 1. 3. 5. 6. F = F2 + F1  F = 1H + 2 Н = 3Н. ...
Видеоматериалы по физике

Видеоматериалы по физике

Проблемы, с которыми сталкиваются учителя на уроках:. нежелание работать самостоятельно. снижения уровня познавательной активности учащихся на уроке. ...
Вариации магнитного поля Земли как составной элемент баз данныхкосмических экспериментов по физике магнитосферы

Вариации магнитного поля Земли как составной элемент баз данныхкосмических экспериментов по физике магнитосферы

ЦЕЛЬ. Рассмотреть требования к базам наземных геофизических данных как элементов программ современных космических проектов по опыту нашей предыдущей ...
Брейн – ринг по физике

Брейн – ринг по физике

Физика – это наука! Но вижу в глазах у детей только муку. Формулы скачут, мелькают подряд, Ох, как им трудно их выстроить в ряд! Но без физики не ...
Атом в физике

Атом в физике

Содержание. Представление атома Джозефа Томпсона. Опыты Резерфорда. “Кино” про то, как выглядит атом. Постулаты Бора. Волновые свойства электрона. ...
Обучение физике

Обучение физике

Профильное обучение ставит основные цели:. - обеспечение углубленного изучения предмета; - создание условия для существенной дифференциации содержания ...
Викторина по физике

Викторина по физике

1 МОЛЕКУЛЫ ДИФФУЗИЯ ИНЕРЦИЯ 3. Из чего состоят молекулы? Ответ. Состоят из еще более мелких частиц - атомов. Кто такие молекулы? Это мельчащие частицы ...
Организация и содержание внеурочной деятельности по физике в условиях современной школы.

Организация и содержание внеурочной деятельности по физике в условиях современной школы.

Что такое внеурочная деятельность? Внеурочная деятельность в рамках ФГОС: «…образовательная деятельность, осуществляемая в формах, отличных от классно-урочной, ...
Викторина по физике

Викторина по физике

Разминка. 2 представителя от команды Правильный ответ - 2 балла Подсказка от команды – 1 балл. Физическая величина- напряжение. Итальянец, создатель ...
Практикум решения задач по физике –

Практикум решения задач по физике –

Как сделать смерч в ванной? Как сделать светильник из карандаша? Можно ли получить дым из воды? Как засунуть яйцо в бутылку? Удивить одноклассников ...
Викторина по физике

Викторина по физике

Знатоки физики. Как вычисляют количество теплоты, выделяемое при сгорании топлива? Q = qm. Как вычисляют количество теплоты, необходимое для нагревания ...
Радиолокация по физике

Радиолокация по физике

Цель:. Систематизировать знания по теме «Радиолокация». Задачи:. 1) Рассмотреть особенности радиолокации и принцип работы 2) Изучить историю развития ...

Конспекты

Тепловые явления в физике и искусстве

Тепловые явления в физике и искусстве

Муниципальное общеобразовательное учреждение. «Началовская средняя общеобразовательная школа». Приволжского района Астраханской области. ...
Применение производной для решения задач ЕНТ по физике и математике

Применение производной для решения задач ЕНТ по физике и математике

Тема урока: «. Применение производной для решения задач ЕНТ по физике и математике». Тип. : интегрированный урок физики и математики. Цели. :. ...
Разработка и применение комплекса дистанционных веб-ресурсов по физике

Разработка и применение комплекса дистанционных веб-ресурсов по физике

. Разработка и применение комплекса. дистанционных веб-ресурсов по физике. Львовский Марк Бениаминович, канд. техн. наук, учитель физики высшей ...
Применение производной в физике

Применение производной в физике

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ В ФИЗИКЕ. Урок по теме: «Применение производной в физике». Цели урока:. — показать широкий спектр приложений производной, ...
План работы со слабоуспевающим по физике

План работы со слабоуспевающим по физике

План работы. со слабоуспевающим. по физике. Главный смысл деятельности учителя естественно-математического цикла состоит в том, чтобы  создать ...
Плавание. Закон Архимеда: задачи по физике с ответами

Плавание. Закон Архимеда: задачи по физике с ответами

Плавание. Закон Архимеда: задачи по физике с ответами. 20.1.   Определите давление жидкости на нижнюю поверхность плавающей шайбы сечения . S.  и ...
Дифференцированный подход в обучении физике

Дифференцированный подход в обучении физике

. МБОУ «Уразовская средняя общеобразовательная школа». . . Краснооктябрьского района. . . . . . . . . . . Дифференцированный ...
Взаимодействие в физике и взаимодействие в жизни. Масса тел

Взаимодействие в физике и взаимодействие в жизни. Масса тел

Конспект урока по физике в 7 классе. Тушминцева Людмила Федоровна,. . учитель физики первой категории. МКОУ «Лицей » г. Калачинска Омской ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 июня 2019
Категория:Физика
Содержит:38 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации