- Кафедра информационных технологий топливно-энергетического комплекса

Презентация "Кафедра информационных технологий топливно-энергетического комплекса" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Кафедра информационных технологий топливно-энергетического комплекса" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА
Слайд 1

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА

Направление подготовки магистров 223200.68 «Техническая физика» Программа «Интегрированные анализаторные комплексы и информационные технологии предприятий ТЭК» Руководитель программы: д.т.н., проф. Успенская Майя Валерьевна
Слайд 2

Направление подготовки магистров 223200.68 «Техническая физика» Программа «Интегрированные анализаторные комплексы и информационные технологии предприятий ТЭК» Руководитель программы: д.т.н., проф. Успенская Майя Валерьевна

ЦЕЛЬ МАГИСТЕРСКОЙ ПРОГРАММЫ. подготовка специалистов международного уровня для предприятий ТЭК, а также специалистов в сфере обучения и подготовки, аналитического приборостроения, экологической безопасности, IT- и нанотехнологий.
Слайд 3

ЦЕЛЬ МАГИСТЕРСКОЙ ПРОГРАММЫ

подготовка специалистов международного уровня для предприятий ТЭК, а также специалистов в сфере обучения и подготовки, аналитического приборостроения, экологической безопасности, IT- и нанотехнологий.

Основные направления научных работ. Физические принципы аналитического приборостроения; Интегрированные анализаторные комплексы на предприятиях ТЭК; Разработка компьютерных комплексов для автоматизированного контроля физических, химических, механических, термических, реологических и некоторых других
Слайд 4

Основные направления научных работ

Физические принципы аналитического приборостроения; Интегрированные анализаторные комплексы на предприятиях ТЭК; Разработка компьютерных комплексов для автоматизированного контроля физических, химических, механических, термических, реологических и некоторых других свойств продуктов нефтепереработки; Моделирование технологических процессов нефтепереработки и физико-химических закономерностей протекания реакций;

Разработка систем автоматизации производственных и технологических процессов продукции ТЭК, управления ее жизненным циклом и качеством, контроля, диагностики и испытаний; Информационные технологии и сети, их инструментальное (программное, техническое, организационное) обеспечение, способы и методы п
Слайд 5

Разработка систем автоматизации производственных и технологических процессов продукции ТЭК, управления ее жизненным циклом и качеством, контроля, диагностики и испытаний; Информационные технологии и сети, их инструментальное (программное, техническое, организационное) обеспечение, способы и методы проектирования, отладки, производства и эксплуатации информационных технологий и систем на предприятиях ТЭК; Неразрушающие методы контроля и диагностики;

Разработка встроенных микропроцессорных комплексов для управления технологическими процессами и измерением широкого круга физико-химических параметров; Разработка критериев и методов прогнозирования разливов нефти и нефтепродуктов; теория катастроф; Разработка комплексов автоматизированных методик а
Слайд 6

Разработка встроенных микропроцессорных комплексов для управления технологическими процессами и измерением широкого круга физико-химических параметров; Разработка критериев и методов прогнозирования разливов нефти и нефтепродуктов; теория катастроф; Разработка комплексов автоматизированных методик анализа различных веществ.

При кафедре ИТТЭК существует аспирантура по трем специальностям: 05.11.07 - «Оптические и оптико-электронные приборы и комплексы» 05.17.06 – «Технология и переработка полимеров и композитов » 02.00.04 - «Физическая химия»
Слайд 7

При кафедре ИТТЭК существует аспирантура по трем специальностям:

05.11.07 - «Оптические и оптико-электронные приборы и комплексы» 05.17.06 – «Технология и переработка полимеров и композитов » 02.00.04 - «Физическая химия»

Руководители магистерских диссертаций. Успенская М.В. , д.т.н., профессор, зав. каф.; Новиков А.Ф., д.т.н., профессор; Зуев В.В., д.х.н., профессор; Слободов А.А., д.х.н., профессор; Ермаков С.С., д.х.н., профессор; Тарасов Б.П., к.х.н., доцент; Клим О.В., к.т.н., доцент; Банных О.П., к.т.н., доцент
Слайд 8

Руководители магистерских диссертаций

Успенская М.В. , д.т.н., профессор, зав. каф.; Новиков А.Ф., д.т.н., профессор; Зуев В.В., д.х.н., профессор; Слободов А.А., д.х.н., профессор; Ермаков С.С., д.х.н., профессор; Тарасов Б.П., к.х.н., доцент; Клим О.В., к.т.н., доцент; Банных О.П., к.т.н., доцент; Никехин А.А., к.ф.-м.н.; Тупицына А.И., к.ф.-м.н.

На базе кафедры созданы следующие лаборатории: 1. Smart-Материалов; 2. Лаборатория нефти и нефтепродуктов; 3. Физико-химических методов анализа; 4. Эколого-аналитический центр.
Слайд 9

На базе кафедры созданы следующие лаборатории: 1. Smart-Материалов; 2. Лаборатория нефти и нефтепродуктов; 3. Физико-химических методов анализа; 4. Эколого-аналитический центр.

Лабораторная база. Кафедра имеет современное компьютерное и лабораторное оснащение Приборное оснащение : TMA 402 F1/F3 Hyperion NETZSCH (Термомеханический анализ определяет изменения размера или объема твердых тел, жидкостей или вязких материалов как функции от температуры и/или времени под определе
Слайд 10

Лабораторная база

Кафедра имеет современное компьютерное и лабораторное оснащение Приборное оснащение : TMA 402 F1/F3 Hyperion NETZSCH (Термомеханический анализ определяет изменения размера или объема твердых тел, жидкостей или вязких материалов как функции от температуры и/или времени под определенной механической нагрузкой), TG 209 F1 Libra NETZSCH (Термо- гравиметрический анализ используется в исследовании и разработках различных веществ и конструкционных материалов, как жидких, так и твердых, для того, чтобы получить информацию об их термостойкости и составе), DSC 204 F1 Phoenix NETZSCH (Дифференциальная сканирующая калориметрия позволяет множество разнообразных величин, характеризующих свойства веществ и материалов и представляющих интерес, как для теории, так и для практики. ДСК позволяет, измерить характеристические температуры и выделяемое или поглощаемое тепло физических процессов или химических реакций, происходящих в образцах твердых тел и жидкостей при их контролируемом нагреве или охлаждении) и т.д.

ИК-спектроскопия. ИнфраЛЮМ ФТ-02 - универсальный Фурье-спектрометр среднего ИК-диапазона для лабораторного применения, снабженный системой сбора и обработки данных на базе персонального компьютера и пакетом аналитических программ. Рабочий спектральный диапазон, см-1 (мкм) 400-7500 (25…1,33) Спектрал
Слайд 11

ИК-спектроскопия

ИнфраЛЮМ ФТ-02 - универсальный Фурье-спектрометр среднего ИК-диапазона для лабораторного применения, снабженный системой сбора и обработки данных на базе персонального компьютера и пакетом аналитических программ.

Рабочий спектральный диапазон, см-1 (мкм) 400-7500 (25…1,33) Спектральное разрешение - 0,7 см-1 Среднее время одного сканирования (с) для спектрального разрешения: 0,5 см-1 6 16 см-1 0,8 Пределы допускаемого значения абсолютной погрешности измерения волновых чисел - ±0,02 см-1 Время непрерывной работы спектрометра - не менее 8 ч Потребляемая мощность 80 Вт Габаритные размеры спектрометра - 580*515*295 мм Масса спектрометра - 37 кг

Фурье-ИК спектрометр для работы в диапазоне ближнего и среднего ИК Спектральный диапазон: не менее 15000 - 350 см-1. Разрешение: не менее 0,6 см-1. Точность волнового числа лучше 0.01 см-1 при 2,000 см-1 Фотометрическая точность лучше 0.1% T Соотношение сигнал/шум при 5 сек сканирования: >6,000:1
Слайд 12

Фурье-ИК спектрометр для работы в диапазоне ближнего и среднего ИК Спектральный диапазон: не менее 15000 - 350 см-1. Разрешение: не менее 0,6 см-1. Точность волнового числа лучше 0.01 см-1 при 2,000 см-1 Фотометрическая точность лучше 0.1% T Соотношение сигнал/шум при 5 сек сканирования: >6,000:1 (= <7.2 · 10-5 AU) пик к пику при разрешении 4 см-1 Соотношение сигнал/шум (достижимое): 3000:1 для одного сканирования при разрешении 4 см-1, 45000:1 для одной минуты сканирования при разрешении 4 см-1 Интерферометр: не требующий динамической настройки и юстировки, уголковый высокостабильный, с зеркалами с золотым напылением. Скорость сканирования: 5 скоростей, 2.2 – 80 кГц (1.4 - 51мм/сек) Двухканальный сбор данных. Автоматическая коррекция влияния атмосферы. Комплект для измерения содержания углеводородов в воде

Рентгеноспектральный флуоресцентный анализ. Спектрометр «Спектроскан Макс GV» относится к аналитическому оборудованию, а конкретно – к приборам для химического анализа. Диапазон определяемых элементов от 11Na до 94Pu Время количественного анализа пробы от 3 мин Время одного элементооопределения от 1
Слайд 13

Рентгеноспектральный флуоресцентный анализ

Спектрометр «Спектроскан Макс GV» относится к аналитическому оборудованию, а конкретно – к приборам для химического анализа.

Диапазон определяемых элементов от 11Na до 94Pu Время количественного анализа пробы от 3 мин Время одного элементооопределения от 10 до 100 секунд Собственная аппаратурная погрешность - 0,5 % Кристалл-анализаторы по Иогану и Иогансону LiF(200), C, PET, KAP, ML (44E) Радиационная безопасность - освобождён от регламентации по радиационному фактору Габаритные размеры и масса: спектрометрический блок 550*450*450 мм; 70 кг блок высоковольтного источника питания 240*440*450 мм; 30 кг блок вакуумного насоса 130*200*320 мм; 15 кг Питание 220 B~220 В, 50 Гц, ~ 380 В Потребляемая мощность от сети 850 Вт

ИССЛЕДОВАНИЕ СВОЙСТВ МАТЕРИАЛОВ
Слайд 14

ИССЛЕДОВАНИЕ СВОЙСТВ МАТЕРИАЛОВ

Для энергосберегающих технологий в строительстве (например, возведение стен) требуются материалы с низкой теплопроводнос-тью. Это достигается путем использования кирпичей и блоков с высокой пористостью. Для образования в них полостей глину смешивают с разнообразными органическими продуктами, способс
Слайд 15

Для энергосберегающих технологий в строительстве (например, возведение стен) требуются материалы с низкой теплопроводнос-тью. Это достигается путем использования кирпичей и блоков с высокой пористостью. Для образования в них полостей глину смешивают с разнообразными органическими продуктами, способствующими образованию больших объемов пустот во время обжига. Выгорание органики в стандартном глиняном блоке сопровождается большим высвобождением энергии (775 Дж/г). Вода и двуокись углерода являются главными летучими компонентами во время выгорания связующих, но Фурье-ИК спектрометр также четко регистрирует выделение из глины фтористого водорода HF и двуокиси серы SO2. Идентификация выделяющихся продуктов позволяет оптимизировать процессы обжига с экономической и экологической точек зрения.

Применения: строительные материалы

Кафедра информационных технологий топливно-энергетического комплекса Слайд: 16
Слайд 16
Контакты. 197101, Санкт-Петербург, Кронверкский пр., д. 49 тел. (812) 232-37-74 Сайт кафедры: http://kittek.iff.ifmo.ru
Слайд 17

Контакты

197101, Санкт-Петербург, Кронверкский пр., д. 49 тел. (812) 232-37-74 Сайт кафедры: http://kittek.iff.ifmo.ru

Список похожих презентаций

Использование информационных технологий на уроках физики

Использование информационных технологий на уроках физики

Автоматизация лабораторного эксперимента. Компьютерное моделирование тех процессов, когда проведение реального эксперимента затруднено или невозможно ...
Использование информационных технологий в преподавании физики

Использование информационных технологий в преподавании физики

Для жизни в информационном обществе необходимо овладеть знаниями и умениями в области информационных технологий. Н. Д.Угринович. Цель:. повышение ...
Применение информационно-коммуникационных технологий – как один из факторов социальной адаптации учащихся

Применение информационно-коммуникационных технологий – как один из факторов социальной адаптации учащихся

Концепция модернизации российского образования предполагает ориентацию образования не только на получение учеником «определенной суммы знаний, но ...
Применение здоровьесберегающих технологий на уроках физики

Применение здоровьесберегающих технологий на уроках физики

Цель - воспитание здоровой, развитой личности, готовой к адаптации в жизни. Здоровьесберегающие образовательные технологии (ЗОТ) – совокупность всех ...
Презентация методики использования интерактивных технологий на уроках физики

Презентация методики использования интерактивных технологий на уроках физики

содержание. Виды интерактивной деятельности Составные части Сравнение технологий Начни с себя Навстречу ученику Деление на группы Этапы творчества ...
Презентация методики использования интерактивных технологий на уроках физики

Презентация методики использования интерактивных технологий на уроках физики

Зміст. Інформація про вчителя Персональні Інтернет – ресурси Курси підвищення кваліфікації Досягнення учнів Презентація досвіду роботи Мої публікації ...
Презентация методики использования интерактивных технологий на уроках физики

Презентация методики использования интерактивных технологий на уроках физики

Актуальность темы. С середины 70-х гг. в отечественном образовании обнаружилась опасная тенденция снижения интереса учащихся к занятиям. Отчуждение ...
Концепция структурных преобразований радиоэлектронной промышленности оборонно-промышленного комплекса

Концепция структурных преобразований радиоэлектронной промышленности оборонно-промышленного комплекса

Основные направления создания и производства продукции РЭП ОПК. Системы связи и автоматизированные системы управления Системы боевого управления Системы ...
Использование технологий

Использование технологий

Инновационный подход учителей к использованию интерактивного оборудования в образовательном процессе позволяет достигать высоких результатов в подготовке ...
Использование личностно-ориентированных технологий при изучении физики

Использование личностно-ориентированных технологий при изучении физики

Формы работы. Проблемно-поисковые и исследовательские приёмы Диалоговое общение Эвристическая беседа Дискуссия Групповая. Физика – наука экспериментальная. ...
Томилин А.К. – Обобщенная электродинамика и перспективы развития новых технологий – 2013

Томилин А.К. – Обобщенная электродинамика и перспективы развития новых технологий – 2013

Нарушение третьей аксиомы Ньютона при взаимодействии не параллельных токов. Рис. 1. (1) (2). Силы Ампера, действующие на элементы тока. Рис. 2. Случай ...
Возможности использования интерактивных технологий на уроках физики

Возможности использования интерактивных технологий на уроках физики

Основные причины, затрудняющие применение интерактивных средств обучения:. технические проблемы психологические барьеры компьютерная некомпетентность ...
Квантовая физика

Квантовая физика

П Л А Н 1. СТО А. Эйнштейна. 2. Тепловое излучение. 3. Фотоэффект. 4. Люминесценция. 5. Химическое действие света. 6. Световое давление. 7. Физический ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Интересная физика

Интересная физика

Интересная физика. Предметная область Физика, информатика Участники: учащиеся 7 – 11 классов, учителя, родители. Цели и задачи: Изучить физику в более ...
Капиллярные явления физика

Капиллярные явления физика

Ищем:. Капиллярные явления Модель капиллярного вечного двигателя Объяснение невозможности создания такого двигателя. Капиллярные явления. Заключаются ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...

Конспекты

Разработка и применение комплекса дистанционных веб-ресурсов по физике

Разработка и применение комплекса дистанционных веб-ресурсов по физике

. Разработка и применение комплекса. дистанционных веб-ресурсов по физике. Львовский Марк Бениаминович, канд. техн. наук, учитель физики высшей ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 июня 2019
Категория:Физика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации