Презентация "Скорость волны" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13

Презентацию на тему "Скорость волны" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 13 слайд(ов).

Слайды презентации

Приготовили ученики 11 «Б» класса МБОУ Лицея №3 Мигулёв Дмитрий Кораблин Антон Жмыхова Екатерина. Волны на пляже, Солнце в небе и многое другое. 5klass.net
Слайд 1

Приготовили ученики 11 «Б» класса МБОУ Лицея №3 Мигулёв Дмитрий Кораблин Антон Жмыхова Екатерина.

Волны на пляже, Солнце в небе и многое другое.

5klass.net

Гляди в оба! Народная мудрость Рыба анаблепа живет на поверхности воды. Ее глаз разделен на два сектора: верхний видит в воздухе, нижний — в воде. Одним взглядом анаблепа замечает сразу и птиц в небе, и рыб в водоеме. Из научной книги
Слайд 2

Гляди в оба! Народная мудрость Рыба анаблепа живет на поверхности воды. Ее глаз разделен на два сектора: верхний видит в воздухе, нижний — в воде. Одним взглядом анаблепа замечает сразу и птиц в небе, и рыб в водоеме. Из научной книги

Тут все понятно: в воздухе свет распространяется со скоростью υ1, в воде — с меньшей скоростью υ2 (υ2 < υ1) их отношение называется показателем (коэффициентом) преломления воды относительно воздуха а из закона преломления описанного в школьном учебнике (правда в несколько ином виде), следует, что
Слайд 3

Тут все понятно:

в воздухе свет распространяется со скоростью υ1, в воде — с меньшей скоростью υ2 (υ2 < υ1) их отношение называется показателем (коэффициентом) преломления воды относительно воздуха а из закона преломления описанного в школьном учебнике (правда в несколько ином виде), следует, что при переходе в оптически более плотную. Среду (при n > 1) преломленный луч пойдет ближе к нормали, чем падающий, т.е. α2 < α1.

Найдем скорость распространения волн на пляже. Если мы создадим «горб» на поверхности спокойной воды — моря, озера или лужи — глубиной h и предоставим его самому себе, то под действием силы тяготения (пропорциональной ускорению свободного падения g) он начнет проваливаться вниз, а вследствие инерции
Слайд 4

Найдем скорость распространения волн на пляже.

Если мы создадим «горб» на поверхности спокойной воды — моря, озера или лужи — глубиной h и предоставим его самому себе, то под действием силы тяготения (пропорциональной ускорению свободного падения g) он начнет проваливаться вниз, а вследствие инерции проскочит положение, соответствующее спокойной поверхности, рядом возникнут другие «горбы», и начнет распространяться волна. Перечислим величины (и их размерности) , от которых, по нашему мнению, может зависеть искомая скорость движения волны υ (м/с) : h (м), g (м/с2). Из соображений размерностей сразу видно, что их можно связать формулой:

Попробуйте сами! Таким образом, чем мельче водоем, тем с меньшей скоростью распространяется волна (разумеется, это справедливо только для мелкой воды, когда скорость не зависит от длины волны). Значит, с приближением к берегу и уменьшением глубины водоема волны движутся все медленнее. По аналогии с
Слайд 5

Попробуйте сами!

Таким образом, чем мельче водоем, тем с меньшей скоростью распространяется волна (разумеется, это справедливо только для мелкой воды, когда скорость не зависит от длины волны). Значит, с приближением к берегу и уменьшением глубины водоема волны движутся все медленнее. По аналогии с оптикой, можно сказать, что они переходят во все более оптически плотную среду. (Кстати, и в стакане с водой тоже можно создать среду с показателем преломления, плавно растущим по направлению к его дну, если сделать очень концентрированный раствор соли, а затем осторожно, избегая перемешивания слоев, добавлять к нему все менее соленые слои и, наконец, чистую воду (попробуйте!). Тогда подводная часть ложки будет выглядеть не преломленной, а плавно изогнутой.)

Пойдем дальше! Разобьем мысленно поверхность моря на полосы шириной dx, параллельные берегу (рис.2). В каждом слое будет своя глубина h, своя скорость распространения волны, свой показатель преломления, обратно пропорциональный этой скорости, и свой угол по отношению к оси X, перпендикулярной берегу
Слайд 6

Пойдем дальше!

Разобьем мысленно поверхность моря на полосы шириной dx, параллельные берегу (рис.2). В каждом слое будет своя глубина h, своя скорость распространения волны, свой показатель преломления, обратно пропорциональный этой скорости, и свой угол по отношению к оси X, перпендикулярной берегу. Тогда закон преломления (1) для всех этих слоев можно записать в виде: Уже отсюда видно, что если глубина стремится к нулю, то угол между лучом и нормалью тоже стремится к нулю. Это и объясняет, почему волны на пляжах «плюхают» прямо в берег. Но можно пойти и дальше — найти само уравнение луча…

Уравнение Луча у(x). Путем глубоких математических вычислений мы выводим формулу: Да ведь это уравнение окружности! (Разумеется, при другой зависимости глубины от расстояния получится иное уравнение луча.)
Слайд 7

Уравнение Луча у(x).

Путем глубоких математических вычислений мы выводим формулу: Да ведь это уравнение окружности! (Разумеется, при другой зависимости глубины от расстояния получится иное уравнение луча.)

Однако пойдем дальше. Уравнение (1) объясняет множество других явлений природы. Например, атмосферную рефракцию солнечных лучей (рис.3). Поскольку плотность атмосферы растет по направлению к поверхности Земли, коэффициент преломления воздуха падает с высотой, и лучи Солнца изгибаются так, что наблюд
Слайд 8

Однако пойдем дальше.

Уравнение (1) объясняет множество других явлений природы. Например, атмосферную рефракцию солнечных лучей (рис.3). Поскольку плотность атмосферы растет по направлению к поверхности Земли, коэффициент преломления воздуха падает с высотой, и лучи Солнца изгибаются так, что наблюдатель на Земле видит его еще некоторое время после геометрического захода и перед восходом. В результате световой день удлиняется на несколько минут, что очень полезно (для колхозных полей, например). Благодаря этому же явлению в высоких широтах полярная «ночь» короче полярного «дня», что тоже очень хорошо.

Миражи в пустыне. Этим же уравнением можно объяснить миражи в пустыне. Когда раскаленный песок подогревает прилежащий слой воздуха, реализуется ситуация, при которой показатель преломления верхнего слоя больше, чем нижнего. В результате лучи, идущие, например, из точки А (рис.4), изгибаются кверху,
Слайд 9

Миражи в пустыне.

Этим же уравнением можно объяснить миражи в пустыне. Когда раскаленный песок подогревает прилежащий слой воздуха, реализуется ситуация, при которой показатель преломления верхнего слоя больше, чем нижнего. В результате лучи, идущие, например, из точки А (рис.4), изгибаются кверху, так что усталый путник принимает точку А* за отражение в столь желанном озере, которого, увы, нет.

Кстати, о рыбе. Пусть даже не об упомянутой анаблепе, а о самой простой. Показатель преломления ее среды обитания — воды — заметно больше единицы ( n≈4/3). Но для того чтобы фокусировать лучи, коэффициент преломления ее глаз должен быть еще больше. Что же, природа должна создавать рыбий глаз из крон
Слайд 10

Кстати, о рыбе.

Пусть даже не об упомянутой анаблепе, а о самой простой. Показатель преломления ее среды обитания — воды — заметно больше единицы ( n≈4/3). Но для того чтобы фокусировать лучи, коэффициент преломления ее глаз должен быть еще больше. Что же, природа должна создавать рыбий глаз из кронгласа или флинта? Это вопрос нетривиальный, и как он решен Природой — об этом можно поговорить или почитать отдельно. Здесь интересно вспомнить, что знаменитый физик Максвелл придумал такой инструмент (он назвал его «рыбьим глазом»), который представляет собою неограниченную среду с показателем преломления, зависящим только от расстояния (r) до фиксированной точки: (Где n0, а — постоянные).

Звуковые волны. Это все оптика. Но то же самое и в акустике — уравнение (1) описывает общее свойство лучей для волн любой природы загибаться в сторону уменьшения скорости распространения волны. Если днем на пляже песок раскален, то скорость звука в прилегающем горячем слое воздуха несколько больше,
Слайд 11

Звуковые волны.

Это все оптика. Но то же самое и в акустике — уравнение (1) описывает общее свойство лучей для волн любой природы загибаться в сторону уменьшения скорости распространения волны. Если днем на пляже песок раскален, то скорость звука в прилегающем горячем слое воздуха несколько больше, чем вверху (она, как известно, пропорциональна корню квадратному из температуры). В результате, как и в случае оптического миража, «лучи звука» уходят вверх, и голоса на пляже звучат приглушенно. А вечером, когда земля успела уже охладиться, а воздух вверху еще теплый, возникает обратная ситуация — звуки, уходящие вверх, затем загибаются вниз, и песни далеко разносятся в поле.

Как, однако, полезно знать физику, даже полководцам! Впрочем, далеко-то они слышны, а вблизи, может быть, и нет. Во время знаменитых битв, производивших много шума, иногда возникали такие атмосферные условия, при которых образовывалась зона молчания. (Конечно, в эти условия, помимо изменения скорост
Слайд 12

Как, однако, полезно знать физику, даже полководцам!

Впрочем, далеко-то они слышны, а вблизи, может быть, и нет. Во время знаменитых битв, производивших много шума, иногда возникали такие атмосферные условия, при которых образовывалась зона молчания. (Конечно, в эти условия, помимо изменения скорости звука с высотой, входят и наличие облаков, и рельеф местности, и другие тонкости, о которых можно узнать при желании из книг по акустике.) Например, шум битвы при Ватерлоо был слышен на очень большом расстоянии, но не был слышен ближе, где стоял корпус наполеоновского генерала Груши, поэтому последний и не пришел на помощь своему императору. Результат известен.

Список литературы. Стасенко А.Л. «Волны на пляже, Солнце в небе и многое другое» //Квант. — 1995. — № 3. — С. 37-38. Веб сайты: http://www.physbook.ru/ http://ru.wikipedia.org/ https://www.google.ru/
Слайд 13

Список литературы.

Стасенко А.Л. «Волны на пляже, Солнце в небе и многое другое» //Квант. — 1995. — № 3. — С. 37-38. Веб сайты: http://www.physbook.ru/ http://ru.wikipedia.org/ https://www.google.ru/

Список похожих презентаций

Звуковые волны скорость звука

Звуковые волны скорость звука

Скорость звука. Звук распространяется очень быстро , но не бесконечно. Скорость звука можно измерить. Промежуток времени между вспышкой молнии и ударом ...
Звуковые волны Скорость звука

Звуковые волны Скорость звука

План урока. 1. Повторим понятия: «звук», «источник звука». 2. Вспомним основные характеристики звука. 3. Познакомимся с понятиями: «звуковые волны», ...
Электромагнитные волны

Электромагнитные волны

Электромагнитные волны. Процесс распространения переменных магнитного и электрического полей и есть электромагнитная волна. Электромагнитные волны ...
Электромагнитные волны

Электромагнитные волны

Электромагнитная волна. Электромагнитная волна – непрерывная система переменных и магнитных полей распространяющихся в вакууме со скоростью света. ...
Звуковые волны

Звуковые волны

Животное, которое воспринимает инфразвук. и 4. Млекопитающее, улавливающее ультразвук. Звук с частотой ниже 16 Гц. Если 109<. ...
Физика Колебания и волны

Физика Колебания и волны

ИЗУЧИВ ТЕМУ .КОЛЕВАНИЯ И ВОЛНЫ, ТЫ ДОЛЖЕН... Знать: уравнение гармонического колебания и определения характеристик колебания: амплитуды, периода, ...
Скорость молекул газа

Скорость молекул газа

Идеальный и реальный газ. Расстояния >>размеров молекул (материальные точки). Взаимодействием молекул пренебрегаем: взаимодействуют при столкновении, ...
Скорость прямолинейного равноускоренного движения

Скорость прямолинейного равноускоренного движения

Цель: сформулировать признаки движения тела с постоянным ускорением. Научить решать графические задачи. Ход урока Проверка домашнего задания. Изучение ...
Звуковые волны в различных средах

Звуковые волны в различных средах

Актуализация знаний. Что такое колебания или колебательное движение? (Колебательное движение – это движение, повторяющееся во времени). Что такое ...
Скорость движения

Скорость движения

скорость. Физическая величина, которая определяется отношением пути, пройденного телом за время движения, к тому промежутку времени за который это ...
Звуковые волны

Звуковые волны

Цели урока: сформировать понятие о звуковой волне, шуме, эхе, звуковом резонансе; раскрыть физическую суть звуковых явлений; уметь объяснять наблюдаемые ...
Звуковые волны (8-9 класс)

Звуковые волны (8-9 класс)

Цель урока. Показать связь физики и биологии, расширить понятие «звуковые волны», рассказать о звуках в природе. Ход урока. Вступление Звуковые волны: ...
Звуковые волны

Звуковые волны

Творческое название. Мир звуков так многообразен, богат, красив, разнообразен…. Основополагающий вопрос. Можно ли понять слышимое? Проблемный вопрос. ...
Звуковые волны

Звуковые волны

Чем определяется высота звука? Чем определяется тембр звука? Чем определяется громкость звука? Что такое механическая волна? Что такое длина волны? ...
Звуковые волны

Звуковые волны

Звуковые волны – упругие волны в среде, вызывающие у человека слуховые ощущения. Частота колебаний звуковых волн лежит в диапазоне от 16 Гц до 20кГц. ...
Звуковые волны

Звуковые волны

Цель урока. Показать связь физики и биологии, расширить понятие «звуковые волны», рассказать о звуках в природе. ? Для чего нам природой даны уши? ...
Звуковые волны и их влияние на живые организмы

Звуковые волны и их влияние на живые организмы

Цель работы. Исследовать природу звука Выяснить, какое действие оказывает звук на - животных - растения - человека. Звук, в широком смысле — у п р ...
Скорость время расстояние

Скорость время расстояние

Цель урока – повторить и закрепить знание связей между величинами, характеризующими движение. Задачи: совершенствовать вычислительные навыки и навыки ...
Звуковые волны и их влияние на человека

Звуковые волны и их влияние на человека

содержание. ЗВУКОВЫЕ ВОЛНЫ И ИХ ХАРАКТЕРИСТИКИ: Что такое звук, источники звука Скорость и длина волны Громкость и высота звука Отражение звука Инфразвук ...
Скорость звука в различных средах

Скорость звука в различных средах

Наши задачи:. Установить, зависит ли скорость звука от того, в какой среде он распространяется. Получить ответ, проведя исследование. Из справочной ...

Конспекты

Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

15.01.2015. Тема : « Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения ...
Длина волны. Скорость распространения волн

Длина волны. Скорость распространения волн

Тема урока:. Длина волны. Скорость распространения волн. Тип урока:. урок сообщения новых знаний. Цель:. ввести понятия длина и скорость волны, ...
Электромагнитные волны

Электромагнитные волны

. МБОУ «Куяшская СОШ» 2013 год. . . Ф. И. О. педагога: Р.В.Султанова. Предмет:. ФИЗИКА. Класс. : 9. "Электромагнитные волны". . Цель:. Познакомить ...
Скорость и перемещение при прямолинейном равнопеременном движении

Скорость и перемещение при прямолинейном равнопеременном движении

Предмет: Физика. Класс: 9 рус. План занятия №. _. 5. __. Дата. 16. 09. 2013 год. Тема:. «Скорость и перемещение при прямолинейном равнопеременном ...
Световые волны

Световые волны

Контрольная работа по теме: «Световые волны». Цель урока: проконтролировать знания учащихся, полученные при изучении данной темы; умения применять ...
Распространение звука. Скорость звука

Распространение звука. Скорость звука

Тема: Распространение звука. Скорость звука. Цель: Выяснить особенности распространения звука, познакомиться с историй измерения скорости звуковых ...
Определение длины световой волны

Определение длины световой волны

Урок - исследование. (11 класс). Определение длины. световой волны. . . . Тема:. . Учитель:. Радченко ...
Механическое движение. Скорость

Механическое движение. Скорость

Открытый урок по теме. «Механическое движение. Скорость.». 7 класс. Хакимуллина Рузалия Мухтаровна учитель физики. МОУ школа №8. . Кировского ...
Источники звука. Звуковые волны

Источники звука. Звуковые волны

Муниципальное бюджетное общеобразовательное учреждение Большеошворцинская средняя общеобразовательная школа. . имени Ф.А. Пушиной. . Якшур - ...
Звуковые колебания и волны

Звуковые колебания и волны

К. онспект урока по физике. . . Тема урока. : Звуковые колебания и волны. . Цель урока. . О. рганизация условий достижения учащимися образовательных ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 июня 2019
Категория:Физика
Содержит:13 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации