- Закон сохранения энергии в механике

Презентация "Закон сохранения энергии в механике" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Закон сохранения энергии в механике" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Закон сохранения энергии в механике. Закон сохранения энергии материальной точки, находящейся в потенциальном поле
Слайд 1

Закон сохранения энергии в механике

Закон сохранения энергии материальной точки, находящейся в потенциальном поле

Потенциальное поле – поле консервативных сил. полная механическая энергия системы. – совершается работа, идущая на увеличение Ек. – связь силы и потенциальной энергии
Слайд 2

Потенциальное поле – поле консервативных сил.

полная механическая энергия системы. – совершается работа, идущая на увеличение Ек. – связь силы и потенциальной энергии

Полная механическая энергия материальной точки (тела, частицы), находящейся в потенциальном поле (в консервативной системе), есть величина постоянная, т.е. с течением времени не меняется.
Слайд 3

Полная механическая энергия материальной точки (тела, частицы), находящейся в потенциальном поле (в консервативной системе), есть величина постоянная, т.е. с течением времени не меняется.

Потенциальные кривые. Одномерное движение тела (материальной точки). В этом случае Ер является функцией лишь одной переменной (например, координаты х) – Ер (х). График зависимости Ер от некоторого аргумента называется потенциальной кривой. Анализ потенциальных кривых определяет характер движения тел
Слайд 4

Потенциальные кривые

Одномерное движение тела (материальной точки). В этом случае Ер является функцией лишь одной переменной (например, координаты х) – Ер (х). График зависимости Ер от некоторого аргумента называется потенциальной кривой. Анализ потенциальных кривых определяет характер движения тел.

Рассмотрим консервативную систему, т.е. систему, в которой превращение механической энергии в другие виды отсутствует. В ней действует закон сохранения энергии: Кинетическая энергия не может быть отрицательной, потому. Для частиц (материальных точек)
Слайд 5

Рассмотрим консервативную систему, т.е. систему, в которой превращение механической энергии в другие виды отсутствует. В ней действует закон сохранения энергии:

Кинетическая энергия не может быть отрицательной, потому

Для частиц (материальных точек)

• Области (ab); (cd): частица находится в потенциальной яме и совершает движение в ограниченной области пространства – финитное движение (ограниченное). • Области (bc); (de) содержат потенциальный барьер. Частица в этой области находиться не может. Т.е. классическая частица потенциальный барьер прео
Слайд 7

• Области (ab); (cd): частица находится в потенциальной яме и совершает движение в ограниченной области пространства – финитное движение (ограниченное). • Области (bc); (de) содержат потенциальный барьер. Частица в этой области находиться не может. Т.е. классическая частица потенциальный барьер преодолеть не может. • Область (е +∞): частица может уйти как угодно далеко – инфинитное движение (неограниченное).

Рассмотрим механическую систему, состоящую из n материальных точек массой mi, движущихся со скоростями vi. – внутренние консервативные силы. – внешние консервативные силы. – внешние неконсервативные силы.
Слайд 8

Рассмотрим механическую систему, состоящую из n материальных точек массой mi, движущихся со скоростями vi. – внутренние консервативные силы. – внешние консервативные силы. – внешние неконсервативные силы.

Второй закон Ньютона для i точки: Под действием силы точка за время dt совершает перемещение dri:
Слайд 9

Второй закон Ньютона для i точки:

Под действием силы точка за время dt совершает перемещение dri:

Суммируя по всем точкам, получаем: При переходе системы из одного состояния в другое: работа, совершаемая внешними неконсервативными силами.
Слайд 10

Суммируя по всем точкам, получаем:

При переходе системы из одного состояния в другое:

работа, совершаемая внешними неконсервативными силами.

Если внешние неконсервативные силы отсутствуют, т.е. Полная механическая энергия консервативной системы есть величина постоянная, с течением времени не меняется. Консервативной системой называется механическая система, внутренние силы которой консервативны, а внешние силы – консервативны и стационар
Слайд 11

Если внешние неконсервативные силы отсутствуют, т.е.

Полная механическая энергия консервативной системы есть величина постоянная, с течением времени не меняется. Консервативной системой называется механическая система, внутренние силы которой консервативны, а внешние силы – консервативны и стационарны. Закон сохранения механической энергии связан с однородностью времени, т.е. физические законы инвариантны относительно начала отсчета времени.

● Замкнутая система – частный случай. В этом случае внешние силы не рассматриваются, т.е. – полная механическая энергия системы. Происходит превращение Ep → Ек, и обратно Ек → Ep .
Слайд 12

● Замкнутая система – частный случай.

В этом случае внешние силы не рассматриваются, т.е. – полная механическая энергия системы. Происходит превращение Ep → Ек, и обратно Ек → Ep .

Наряду с консервативными силами в системе могут существовать неконсервативные силы (диссипативные, например, Fтр). В этом случае с течением времени полная механическая энергия системы уменьшается. Но механическая энергия не исчезает, она переходит в другие виды энергии, например, при Fтр во внутренн
Слайд 13

Наряду с консервативными силами в системе могут существовать неконсервативные силы (диссипативные, например, Fтр). В этом случае с течением времени полная механическая энергия системы уменьшается. Но механическая энергия не исчезает, она переходит в другие виды энергии, например, при Fтр во внутреннюю энергию.

Закон сохранения энергии в механике является частным случаем фундаментального (всеобщего) закона сохранения энергии: сумма всех видов энергии в замкнутой системе постоянна
Слайд 14

Закон сохранения энергии в механике является частным случаем фундаментального (всеобщего) закона сохранения энергии: сумма всех видов энергии в замкнутой системе постоянна

Применение законов сохранения импульса и энергии для анализа упругого и неупругого ударов шаров Понятие об ударе в физике. Удар – кратковременное взаимодействие двух или более тел. Центральный удар (двух шаров) – удар, при котором движение происходит по прямой, соединяющей центры тел.
Слайд 15

Применение законов сохранения импульса и энергии для анализа упругого и неупругого ударов шаров Понятие об ударе в физике

Удар – кратковременное взаимодействие двух или более тел. Центральный удар (двух шаров) – удар, при котором движение происходит по прямой, соединяющей центры тел.

Сила взаимодействия при ударе тел велика. следовательно, внешними силами, действующими на тело, можно пренебречь. Поэтому систему тел в процессе удара можно рассматривать как замкнутую систему и применять к ней законы сохранения. Тело во время удара претерпевает деформацию. Кинетическая энергия во в
Слайд 16

Сила взаимодействия при ударе тел велика

следовательно, внешними силами, действующими на тело, можно пренебречь. Поэтому систему тел в процессе удара можно рассматривать как замкнутую систему и применять к ней законы сохранения. Тело во время удара претерпевает деформацию. Кинетическая энергия во время удара переходит в энергию деформации.

Если деформация упругая, то тело стремится принять прежнюю форму. Следователь, имеем упругий удар. Если деформация неупругая, то тело не принимает прежнюю форму – неупругий удар.
Слайд 17

Если деформация упругая, то тело стремится принять прежнюю форму. Следователь, имеем упругий удар. Если деформация неупругая, то тело не принимает прежнюю форму – неупругий удар.

Во время удара происходит перераспределение энергии между соударяющимися телами. В общем случае относительная скорость тел после удара не достигает своего прежнего значения, т.к. нет идеально упругих тел. Коэффициент восстановления – отношение нормальных составляющих относительной скорости после уда
Слайд 18

Во время удара происходит перераспределение энергии между соударяющимися телами.

В общем случае относительная скорость тел после удара не достигает своего прежнего значения, т.к. нет идеально упругих тел. Коэффициент восстановления – отношение нормальных составляющих относительной скорости после удара un и до удара vn: ε = 1 – абсолютно упругий удар. ε = 0 – абсолютно неупругий удар.

Абсолютно упругий удар – удар, при котором внутренняя энергия соударяющихся тел не изменяется. Закон сохранения импульса: Закон сохранения энергии:
Слайд 19

Абсолютно упругий удар – удар, при котором внутренняя энергия соударяющихся тел не изменяется.

Закон сохранения импульса: Закон сохранения энергии:

При одинаковых массах происходит обмен скоростями.
Слайд 23

При одинаковых массах происходит обмен скоростями.

Абсолютно неупругий удар – удар, при котором полная механическая энергия соударяющихся тел не сохраняется, частично переходит во внутреннюю энергию; импульс сохраняется. При абсолютно неупругом ударе тела после удара двигаются с одинаковой скоростью.
Слайд 24

Абсолютно неупругий удар – удар, при котором полная механическая энергия соударяющихся тел не сохраняется, частично переходит во внутреннюю энергию; импульс сохраняется.

При абсолютно неупругом ударе тела после удара двигаются с одинаковой скоростью.

● Наковальня. Вся энергия переходит в теплоту или деформацию.
Слайд 25

● Наковальня

Вся энергия переходит в теплоту или деформацию.

● Удар молотка по гвоздю. Вся энергия переходит в механическую энергию.
Слайд 26

● Удар молотка по гвоздю.

Вся энергия переходит в механическую энергию.

Список похожих презентаций

Закон сохранения внутренней энергии

Закон сохранения внутренней энергии

Цель урока:. Знать формулировку закона сохранения энергии и уметь применять его для решения задач. Kакой буквой обозначают количество теплоты? A Q ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

Темы для повторения: Потенциальная энергия. Кинетическая энергия. Полная механическая энергия. Определим имеющиеся у вас знания по рассматриваемым ...
Закон сохранения внутренней энергии. Уравнение теплового баланса

Закон сохранения внутренней энергии. Уравнение теплового баланса

Цели урока. познакомиться с законом сохранения внутренней энергии и уравнением теплового баланса; научиться применять полученные знания при решении ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

закон. Энергия никуда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому. Закон ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

повторить основные понятия кинематики, раскрыть сущность закона сохранения и превращения энергии в механических процессах. Цель:. Задачи урока: Ввести ...
Закон сохранения энергии в тепловых процессах

Закон сохранения энергии в тепловых процессах

Цель урока:. Систематизация и обобщение ранее полученных знаний по данной теме. Задачи урока: Заинтересовать учащихся исследовательской деятельностью; ...
Закон сохранения энергии

Закон сохранения энергии

Потенциальная энергия – это энергия которой обладают предметы в состоянии покоя.
Кинетическая энергия – это энергия тела приобретенная при движении. ...
Закон сохранения энергии в тепловых процессах

Закон сохранения энергии в тепловых процессах

План. Виды топлива Отопление и обогрев Приготовление пищи Теплопередачи и закон сохранения энергии Энергия и теплота в живой природе Тепловые механизмы ...
"Законы сохранения в механике"

"Законы сохранения в механике"

Импульс тела Модуль Направление. Единица измерения. Закон сохранения импульса. Модуль p=mv Направление p v. Единица измерения кг•м/с. Закон сохранения ...
Законы сохранения в механике

Законы сохранения в механике

Импульс тела. Импульс тела - векторная величина равная произведению массы тела на его скорость. P=m v P (кг м /с). Примеры реактивного движения: полет ...
Демонстрация законов сохранения в механике

Демонстрация законов сохранения в механике

Важность изучения энергии. Изучение различных источников энергии и способов их использования с наибольшей пользой представляет чрезвычайную важность. ...
Импульс. Закон сохранения импульса

Импульс. Закон сохранения импульса

1 Вариант. 1. Каким выражением определяют импульс тела? 2 Вариант. 1. Чему равен импульс тела массой 2 кг, движущегося со скоростью 3 м/с? 2. В каких ...
История открытия законов сохранения импульса

История открытия законов сохранения импульса

«Золотое правило» механики. Что выигрываешь в силе, то проигрываешь в расстояние. Импульс – произведения массы тела на его скорость. Р.Декарт(1596-1650). ...
Импульс тела. Закон сохранения импульса.

Импульс тела. Закон сохранения импульса.

Импульс тела – величина равная произведению массы тела на его скорость. Импульс тела – величина векторная. Импульс. Тела Силы. - II закон Ньютона ...
Импульс. Закон сохранения импульса

Импульс. Закон сохранения импульса

Тема урока:. Импульс. Закон сохранения импульса. Импульсом тела называют векторную величину, равную произведению массы тела на его скорость:. Импульс ...
Импульс тела. Импульс силы. Закон сохранения импульса

Импульс тела. Импульс силы. Закон сохранения импульса

А) II и IV B) I и III C) I и IV D) II и III E) I и II. №2: На рисунке приведен график зависимости импульсов трех тел от их скоростей. В каком из нижеприведенных ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Импульс тела. Внутренние силы, действующие в замкнутой системе тел, не могут изменить полный импульс системы. В данном опыте импульс передается от ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Найдем взаимосвязь между действующей на тело силой, временем ее действия, и изменением скорости тела. m F V0 a. По II закону Ньютона: F=ma Ускорение ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Цель:. Дать понятие импульса; Сформировать понятие о замкнутых системах; вывести закон сохранения импульса; Научиться решать задачи. Решение задач. ...
Импульс тела. Закон сохранения импульса

Импульс тела. Закон сохранения импульса

Стакан с водой находится на длинной полоске прочной бумаги. Если тянуть полоску медленно, то стакан движется вместе с бумагой. А если резко дернуть ...

Конспекты

Закон сохранения энергии в механике

Закон сохранения энергии в механике

Урок № 41. . ФИЗИКА. . 7 класс. . . Закон сохранения энергии в механике. . Дата:. . . ДЗ: §. 39. . . . Цели урока:. 1.Образовательная:. ...
Законы сохранения в механике

Законы сохранения в механике

Повторительно - обобщающий урок. Решение задач по теме «Законы сохранения в механике». Урок проводится в 10 классе при обобщающем повторении темы ...
Законы сохранения импульса и энергии

Законы сохранения импульса и энергии

МОУ Каргинская средняя общеобразовательная школа. Конспект урока по теме:. «Законы сохранения импульса и энергии ». ( 10 класс). ...
Закон сохранения и превращения энергии

Закон сохранения и превращения энергии

Закона сохранения и превращения энергии. Цель урока:. . Раскрыть сущность закона сохранения и превращения энергии в механических процессах. Задачи ...
Закон сохранения механической энергии

Закон сохранения механической энергии

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №2. г. Навашино Нижегородской области. Конспект ...
Закон сохранения импульса и механической энергии

Закон сохранения импульса и механической энергии

Урок физики в 9 классе. «Закон сохранения импульса и механической энергии». Подготовка к ГИА». Цели и задачи занятия:. - систематизировать знания ...
Закон сохранения механической энергии

Закон сохранения механической энергии

Конспект учебного занятия « Закон сохранения механической энергии». 10 класс. Цели урока:. убедиться в истинности закона сохранения полной механической ...
Закон сохранения механической энергии

Закон сохранения механической энергии

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №2. г. Навашино Нижегородской области. Конспект ...
Закон сохранения полной механической энергии

Закон сохранения полной механической энергии

Урок решения задач для 10 класса по теме. : «Закон сохранения полной механической энергии». . . Урок с применением здоровьесберегающих образовательных ...
Законы сохранения в механике

Законы сохранения в механике

"Законы сохранения в механике". . Урок физики в 10-м классе. . Тип занятия:. Семинар. Урок комплексного применения знаний. Продолжительность ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.