- Влияние звука на струю жидкости

Презентация "Влияние звука на струю жидкости" (10 класс) по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Влияние звука на струю жидкости" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

Влияние звука на струю жидкости. Работа выполнена учеником 10 информационно-технологического класса Кравцовым Даниилом
Слайд 1

Влияние звука на струю жидкости

Работа выполнена учеником 10 информационно-технологического класса Кравцовым Даниилом

В ходе изучения темы были рассмотрены следующие вопросы: Струя жидкости с физической точки зрения. Капиллярные волны Различные явления, возникающие при воздействии звука на струю жидкости Исследование частоты слипания струи жидкости от физических и химических свойств жидкости
Слайд 2

В ходе изучения темы были рассмотрены следующие вопросы:

Струя жидкости с физической точки зрения. Капиллярные волны Различные явления, возникающие при воздействии звука на струю жидкости Исследование частоты слипания струи жидкости от физических и химических свойств жидкости

На струе жидкости, подающей вниз можно выделить две области: ближайшая к отверстию сопла часть струи совершенно прозрачна и выглядит неподвижным цилиндром; ниже струя внезапно становится мутной, т.к. начинается разбиение этого сплошного потока на отдельные капли, которые хорошо видны при фотографиро
Слайд 3

На струе жидкости, подающей вниз можно выделить две области:

ближайшая к отверстию сопла часть струи совершенно прозрачна и выглядит неподвижным цилиндром;

ниже струя внезапно становится мутной, т.к. начинается разбиение этого сплошного потока на отдельные капли, которые хорошо видны при фотографировании со вспышкой.

Разбиение струи на отдельные капли происходит беспорядочно благодаря наличию на поверхности струи капиллярных волн. Опыт № 1. Внешнее воздействие на струю вызывает на её поверхности капиллярные волны, которые легко наблюдать. Двигая ложкой вверх-вниз можно увидеть, как будет меняться длина капиллярн
Слайд 4

Разбиение струи на отдельные капли происходит беспорядочно благодаря наличию на поверхности струи капиллярных волн.

Опыт № 1. Внешнее воздействие на струю вызывает на её поверхности капиллярные волны, которые легко наблюдать. Двигая ложкой вверх-вниз можно увидеть, как будет меняться длина капиллярной волны.

Капиллярные волны возникают благодаря наличию на поверхности жидкости сил поверхностного натяжения

Механизм образования капиллярных волн. Пусть поверхность жидкости в некотором месте случайно изогнулась, например, стала вогнутой (рис. а). Под действием разности давлений жидкость из соседних участков начнет приливать под вогнутую поверхность, пока поверхность снова не станет плоской. Но движение ж
Слайд 5

Механизм образования капиллярных волн

Пусть поверхность жидкости в некотором месте случайно изогнулась, например, стала вогнутой (рис. а). Под действием разности давлений жидкость из соседних участков начнет приливать под вогнутую поверхность, пока поверхность снова не станет плоской. Но движение жидкости не прекратится и будет продолжаться по инерции. Поэтому поверхность станет выпуклой, давление под ней возрастет, и жидкость будет вытекать из-под нее (рис. б) и т. д. Такие колебания в жидкости естественно вызовут аналогичные колебания в соседних участках, то есть возникнет волна.

Для определения скорости распространения капиллярной волны воспользуемся тем фактом, что гармошка, возникающая на поверхности струи, неподвижна. Это означает, что скорость распространения волны равна скорости течения воды из сопла по абсолютной величине и противоположна ей по направлению. Полученный
Слайд 6

Для определения скорости распространения капиллярной волны воспользуемся тем фактом, что гармошка, возникающая на поверхности струи, неподвижна. Это означает, что скорость распространения волны равна скорости течения воды из сопла по абсолютной величине и противоположна ей по направлению. Полученный экспериментально график зависимости между λ и ? показан на рис.

Различные явления, возникающие при воздействии звука на струю жидкости
Слайд 7

Различные явления, возникающие при воздействии звука на струю жидкости

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20000 Гц. Источником возникновения волнового движения (источником звука) может служить любое тело, способное совершать упругие колебания - мембрана, диффузор, металлическая п
Слайд 8

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20000 Гц. Источником возникновения волнового движения (источником звука) может служить любое тело, способное совершать упругие колебания - мембрана, диффузор, металлическая пластина, струна.

То, что струя воды восприимчива к звуку, можно пронаблюдать на простом опыте. Опыт № 2. Струйный автогенератор звука.
Слайд 9

То, что струя воды восприимчива к звуку, можно пронаблюдать на простом опыте. Опыт № 2. Струйный автогенератор звука.

Для исследования влияния звуковых волн различной частоты на струю жидкости была собрана специальная установка. сосуд с жидкостью, установленный на высоте 0.7 м над столом. сопло d=1mm динамик резиновый шланг. Генератор звуковых волн
Слайд 10

Для исследования влияния звуковых волн различной частоты на струю жидкости была собрана специальная установка.

сосуд с жидкостью, установленный на высоте 0.7 м над столом

сопло d=1mm динамик резиновый шланг

Генератор звуковых волн

Было замечено, что при определенной частоте звуковых колебаний, исходящих из динамиков, сплошной (прозрачный) участок струи резко сокращается, а сноп струй слипается, образуя одну внешне совершенно непрерывную струю.
Слайд 11

Было замечено, что при определенной частоте звуковых колебаний, исходящих из динамиков, сплошной (прозрачный) участок струи резко сокращается, а сноп струй слипается, образуя одну внешне совершенно непрерывную струю.

В процессе естественного образования капель есть некоторая периодичность, но она далека от идеальной: капли получаются немного различными. Каждая из этих капель, обладая своей массой и скоростью, летит по своей траектории, создавая впечатление снопа струй.
Слайд 13

В процессе естественного образования капель есть некоторая периодичность, но она далека от идеальной: капли получаются немного различными. Каждая из этих капель, обладая своей массой и скоростью, летит по своей траектории, создавая впечатление снопа струй.

При совпадении частоты звука с частотой естественного образования капель, распад струи начинает происходить раньше и со строгой периодичностью. Звук как бы отрывает от струи через равные промежутки времени одинаковые капли. Эти капли быстро движутся по одной траектории и производят впечатление сплош
Слайд 14

При совпадении частоты звука с частотой естественного образования капель, распад струи начинает происходить раньше и со строгой периодичностью. Звук как бы отрывает от струи через равные промежутки времени одинаковые капли. Эти капли быстро движутся по одной траектории и производят впечатление сплошной слипшейся струи.

Фото слипшейся струи с использованием стробоскопического эффекта вспышки
Слайд 15

Фото слипшейся струи с использованием стробоскопического эффекта вспышки

Задача о неустойчивости жидкого цилиндра впервые была решена английским физиком Дж. В. Рэлеем в конце XIX века. Он получил точную оценку для условия роста амплитуды капиллярных возмущений, которая имеет вид: λ > 2π r0 С максимальной скоростью будет расти амплитуда волны, имеющей длину ? ? = ?? ?
Слайд 16

Задача о неустойчивости жидкого цилиндра впервые была решена английским физиком Дж. В. Рэлеем в конце XIX века. Он получил точную оценку для условия роста амплитуды капиллярных возмущений, которая имеет вид: λ > 2π r0 С максимальной скоростью будет расти амплитуда волны, имеющей длину ? ? = ?? ? ? ? Таким образом, длина сплошного участка струи определяется характером возмущений, сообщаемых струе соплом. Чем больше амплитуда этих возмущений, и чем ближе длина капиллярной волны к значению λm, тем быстрее происходит распад струи на капли, то есть короче оказывается сплошной участок струи.

Исследование частоты слипания струи жидкости от физических и химических свойств жидкости
Слайд 17

Исследование частоты слипания струи жидкости от физических и химических свойств жидкости

Были проделаны исследования зависимость частоты слипания струи от следующих характеристик жидкости
Слайд 18

Были проделаны исследования зависимость частоты слипания струи от следующих характеристик жидкости

С повышением температуры требуется воздействие гораздо большей частоты звука, чтобы добиться эффекта слипания. Это можно объяснить тем, что при повышении температуры скорость движения молекул возрастает, ослабевают межмолекулярные связи и силы поверхностного натяжения жидкого цилиндра. Таким образом
Слайд 19

С повышением температуры требуется воздействие гораздо большей частоты звука, чтобы добиться эффекта слипания. Это можно объяснить тем, что при повышении температуры скорость движения молекул возрастает, ослабевают межмолекулярные связи и силы поверхностного натяжения жидкого цилиндра. Таким образом, возбудить на поверхности струи капиллярную волну необходимой длины оказывается сложнее.

Температура

Частота звуковой волны в Гц

1

В качестве жидкостей брались вода и 5%, 10% водные растворы поваренной соли (NaCl) при температуре 25 0С. В данном опыте проявилась сильная зависимость процесса слипания струи от амплитуды звуковых колебаний. При увеличении плотности растворов струя реагировала на звуковое воздействие только на макс
Слайд 20

В качестве жидкостей брались вода и 5%, 10% водные растворы поваренной соли (NaCl) при температуре 25 0С. В данном опыте проявилась сильная зависимость процесса слипания струи от амплитуды звуковых колебаний. При увеличении плотности растворов струя реагировала на звуковое воздействие только на максимальной амплитуде. По второму диапазону частот прослеживается явное снижение частоты слипания струи при увеличении плотности жидкости.

Плотность 2

При воздействии частотой в 247 Гц водяной цилиндр сокращался практически втрое, что говорило о возникновении устойчивых капиллярных волн. Из-за более слабого поверхностного натяжения мыльного раствора по сравнению с водой капли гораздо дольше принимали правильную сферическую форму, что видно на фото
Слайд 22

При воздействии частотой в 247 Гц водяной цилиндр сокращался практически втрое, что говорило о возникновении устойчивых капиллярных волн. Из-за более слабого поверхностного натяжения мыльного раствора по сравнению с водой капли гораздо дольше принимали правильную сферическую форму, что видно на фото.

Разбиение водяного цилиндра на капли происходило строго периодически, что говорит о том, что малый коэффициент поверхностного натяжения и повышенная вязкость не являются определяющими факторами при воздействии звуковой волны на струю жидкости. Важен также химический состав жидкости.
Слайд 23

Разбиение водяного цилиндра на капли происходило строго периодически, что говорит о том, что малый коэффициент поверхностного натяжения и повышенная вязкость не являются определяющими факторами при воздействии звуковой волны на струю жидкости. Важен также химический состав жидкости.

Выводы: Таким образом, в ходе проведенных исследований была установлена зависимость частоты слипания струи от температуры жидкости (прямая зависимость) и от плотности жидкости (обратная зависимость). Установить четкую зависимость частоты слипания струи от коэффициента поверхностного натяжения и вязк
Слайд 24

Выводы:

Таким образом, в ходе проведенных исследований была установлена зависимость частоты слипания струи от температуры жидкости (прямая зависимость) и от плотности жидкости (обратная зависимость). Установить четкую зависимость частоты слипания струи от коэффициента поверхностного натяжения и вязкости не удалось в силу ограниченной возможности по использованию жидкостей, имеющих различные указанные характеристики.

Была установлена большая зависимость частоты слипания струи от химического состава жидкости. У двух ньютоновских жидкостей (молоко и мыльный раствор) с примерно равными физическими характеристиками (вязкость существенно больше, чем у воды, а коэффициент поверхностного натяжения существенно меньше, чем у воды) наблюдалась прямо противоположная реакция на звуковое воздействие. Струя молока не реагировала на звук, а струя мыльного раствора показала наибольшую чувствительность к звуковому воздействию.

Список похожих презентаций

Влияние громкого звука и шума на организм человека

Влияние громкого звука и шума на организм человека

Выяснить, влияет ли громкость звука и шум на организм человека. Цель работы. Громкость звука и шум влияют на организм человека. гипотеза. Мы живём ...
Поверхностное натяжение жидкости

Поверхностное натяжение жидкости

Дети хорошо знают, что «куличики» можно построить из мокрого песка. Сухие песчинки не пристают друг к другу. Но также не пристают друг к другу песчинки, ...
От чего зависит высота звука?

От чего зависит высота звука?

Ответить на вопрос: Кто в полёте быстрее машет крыльями: шмель или комар? ? Наша гипотеза:. Шмеля и особенно комара очень трудно увидеть Как же я ...
Мир звука

Мир звука

Введение. Мир, окружающий нас, можно назвать миром звуков. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром во время ...
Источники звука. Характеристики звука

Источники звука. Характеристики звука

Звук – это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения. Источниками звука могут быть любые ...
Источники звука

Источники звука

2. Амплитуда колебания – это…. Б. Отклонение колеблющегося тела от положения равновесия. В. Наибольшее (по модулю) отклонение колеблющегося тела от ...
В мире звука

В мире звука

Цель: Узнать, как почувствовать невидимое? Исследовать звуковые волны. Задачи: Дать понятие звука. Выявить его основные характеристики и свойства. ...
Твёрдые тела, жидкости и газы

Твёрдые тела, жидкости и газы

В природе вещества встречаются в трёх агрегатных состояниях: твёрдом, жидком и газообразном. Многие из них мы привыкли видеть в каком-либо одном состоянии. ...
Влияние магнитного поля на прорастание семян

Влияние магнитного поля на прорастание семян

Мы предполагаем: искусственное магнитное поле положительно влияет на прорастание семян Цель: выявить влияние магнитного поля на прорастание семян. ...
Влияние имплантации ионов фосфора на структурные изменения в поверхностных слоях монокристалла кремния

Влияние имплантации ионов фосфора на структурные изменения в поверхностных слоях монокристалла кремния

Цель работы. Исследование структурных изменений в приповерхностных слоях монокристаллов Si после имплантации ионов фосфора. Энергия имплантованных ...
Влияние звуковых и электромагнитных волн на скорость прорастания пшеницы

Влияние звуковых и электромагнитных волн на скорость прорастания пшеницы

Цели и задачи Формула воды Волны Опыт. Заключение и диаграммы. В последнее время в СМИ стало появляться много информации о необычных свойствах воды, ...
Влияние атмосферного давления и температуры на формирование снежинок

Влияние атмосферного давления и температуры на формирование снежинок

Цель: исследование влияния атмосферного давления и температуры на формирование снежинок, изучение их форм и видов. Задачи:. 1.Узнать, при каких погодных ...
Влияние атмосферного давления

Влияние атмосферного давления

Цель проекта. Объяснить, какое действие оказывает атмосферное давление на живые существа, на человека. Атмосферное давление. - давление атмосферного ...
Взаимные превращения жидкости, пара и твёрдого тела

Взаимные превращения жидкости, пара и твёрдого тела

Агрегатные состояния вещества. В обычных условиях любое вещество пребывает в одном из трех состояний – твердом, жидком или газообразном. Чтобы вещество ...
Расчет давления жидкости на дно и стенки сосуда

Расчет давления жидкости на дно и стенки сосуда

Цель урока: получить формулу для вычисления давления в жидкости на дно и стенки сосуда. План урока: От каких величин будет зависеть давление в жидкости; ...
Влияние магнитных полей на живые организмы

Влияние магнитных полей на живые организмы

Цель: Выявить свойства магнитных полей и проанализировать влияние на живые организмы. Задачи: Провести анализ Изучить влияние магнитных полей на растительные ...
Свойства поверхности жидкости

Свойства поверхности жидкости

Цели:. Познавательная: познакомить учащихся со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; ...
Влияние радиации

Влияние радиации

Радиация. Азанова Анастасия Леонидовна МОУ «СОШ № 11» пгт Оверята Краснокамский район. Радиация вокруг нас. Атомной радиацией, или ионизирующим излучением, ...
Физика звука

Физика звука

Пытаются шептать клочки афиш, Пытается кричать железо крыш, И в трубах петь пытается вода, И так мычат бессильно провода... К.Я.Ваншенкин. ОСНОВОПОЛАГАЮЩИЙ ...
Влияние радиации на организм

Влияние радиации на организм

Актуальность. Мы живем в городе, где возможно поражение ионизирующим излучением. Поэтому нам бы хотелось больше узнать о влиянии различных доз облучения ...

Конспекты

Влияние бытовых приборов на здоровье человека

Влияние бытовых приборов на здоровье человека

Тема: « Влияние бытовых приборов на здоровье человека». . . . 2013-2014. . Учитель Войлошникова И. И. МБОУ « СОШ № 18» г. Череповец. 2013-2014. ...
Изучение действия жидкости на погруженное в нее тело.

Изучение действия жидкости на погруженное в нее тело.

Конспект урока физики в 7 классе. Практическая работа. Предмет: физика. Программа: автор Г. Н. Степанова. Учебник: Физика 8. Г. Н. Степанова. ...
Расчет давления жидкости на дно и стенки сосуда

Расчет давления жидкости на дно и стенки сосуда

Учитель:. Смирнова Ирина Владимировна. Класс:. 7. Учебник: «Физика 7 класс», Перышкин А.В. Тема. : Решение задач по теме «Расчет давления жидкости ...
Решение задач на расчет давления жидкости на дно и стенки сосуда

Решение задач на расчет давления жидкости на дно и стенки сосуда

Урок физики в 7 классе по теме «Решение задач на расчет давления жидкости на дно и стенки сосуда». Милявская Елена Ивановна. Учитель физики. ...
Источники звука. Звуковые колебания. Высота и тембр звука. Громкость звука

Источники звука. Звуковые колебания. Высота и тембр звука. Громкость звука

Источники звука. Звуковые колебания. Высота и тембр звука. Громкость звука. Цель урока. Выяснить, что такое звук, его свойства, а также характер ...
Распространение звука. Высота, тембр и громкость звука

Распространение звука. Высота, тембр и громкость звука

Урок 9класс. Распространение звука. Высота, тембр и громкость звука. Цели:. Образовательные – ввести основные характеристики звука: высота, тембр, ...
Действие жидкости и газа на погруженное в них тело

Действие жидкости и газа на погруженное в них тело

Муниципальное бюджетное общеобразовательное. учреждение «Красногвардейская средняя школа №1». Красногвардейского района, Оренбургской области. ...
Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Бюджетное общеобразовательное учреждение «Лежская основная общеобразовательная школа». Конспект урока по физикев 8 ...
Давление в жидкости и газе. Расчет давления жидкости на дно и стенки сосуда

Давление в жидкости и газе. Расчет давления жидкости на дно и стенки сосуда

Конспект урока в 7 классе. по теме: Давление в жидкости и газе. . . Расчет давления жидкости на дно и стенки сосуда. (разработка урока на конкурс ...
Давление в жидкости. Расчет давления в жидкости и газе

Давление в жидкости. Расчет давления в жидкости и газе

Тема:. "Давление в жидкости. Расчет давления в жидкости и газе". . Тип урока: урок изучения нового материала. Цели урока:. формирование понятия ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.