- Гравитационное поле Земли

Презентация "Гравитационное поле Земли" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Гравитационное поле Земли" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

Гравитационное поле Земли. Учитель физики: Маркина Л.В.
Слайд 1

Гравитационное поле Земли.

Учитель физики: Маркина Л.В.

Гравитационная карта Земли. Гравитационные аномалии нашей планеты: желтые участки - самая высокая сила тяжести, красные высокая сила тяжести, синие и голубые участки - пониженная сила тяжести Картинки продемонстрировали специалисты из Института астрономической физики и физической геодезии Техническо
Слайд 2

Гравитационная карта Земли

Гравитационные аномалии нашей планеты: желтые участки - самая высокая сила тяжести, красные высокая сила тяжести, синие и голубые участки - пониженная сила тяжести Картинки продемонстрировали специалисты из Института астрономической физики и физической геодезии Технического университета Мюнхена Точную форму Земли удалось определить с помощью данных, полученных с помощью спутника GОСЕ (Gravity Field and Steady-State Ocean Circulation Explorer) Европейского космического агентства. Он был запущен в марте 2009 года, летает на высоте порядка 250 километров - ниже, чем другие аппараты. И улавливает малейшие гравитационные аномалии.

В Евразии и Африке в основном попадаются участки с повышенным притяжением (обозначены красным и желтым). А вот в Северной Америке сила тяжести меньше (синие участки). Разница в силе тяжести между США и Россией может достигать 0,04 процента.

Наличие всемирного тяготения приводит к представлению о гравитационном поле (как особой формы материи), в пределах которого на каждое тело действует сила, прямо пропорциональная массе этого тела. Гравитационное поле представляет собой разновидность силового поля: на частицы, помещённые в каждой точк
Слайд 3

Наличие всемирного тяготения приводит к представлению о гравитационном поле (как особой формы материи), в пределах которого на каждое тело действует сила, прямо пропорциональная массе этого тела. Гравитационное поле представляет собой разновидность силового поля: на частицы, помещённые в каждой точке такого поля, действуют силы, прямо пропорциональные определённому физическому свойству этих частиц – массе. Земля также окружена гравитационным полем (или полем тяготения), в котором на тело действуют силы, пропорциональные их массам.

Гравитационное поле Земли

Яковлева Т.Ю. В каждой точке поля Земли можно определить отношение силы, действующей на точечное тело, к массе этого тела; это отношение не зависит от вещества тела, и равно ускорению, сообщаемому силой тяготения в данной точке поля:
Слайд 4

Яковлева Т.Ю.

В каждой точке поля Земли можно определить отношение силы, действующей на точечное тело, к массе этого тела; это отношение не зависит от вещества тела, и равно ускорению, сообщаемому силой тяготения в данной точке поля:

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения. Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свобо
Слайд 5

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения. Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.

Изменение силы тяготения, действующей на космонавта при удалении от Земли. Из графика функции g = g(r) наглядно видно, что напряженность гравитационного поля g стремится к нулю, когда расстояние r стремится к бесконечности. Поэтому утверждения типа «спутник покинул гравитационное поле Земли» неверны
Слайд 6

Изменение силы тяготения, действующей на космонавта при удалении от Земли

Из графика функции g = g(r) наглядно видно, что напряженность гравитационного поля g стремится к нулю, когда расстояние r стремится к бесконечности. Поэтому утверждения типа «спутник покинул гравитационное поле Земли» неверны.

Расстояние от Земли до Луны. Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.
Слайд 7

Расстояние от Земли до Луны

Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.

Средний радиус Земли RЗ ≈ 6,37·106 м. Луна находится от центра Земли на расстоянии rЛ ≈ 3,84·108 м. Следовательно, ускорение aЛ, обусловленное земным притяжением, на орбите Луны равно: aл = g(Rз/rл)2 = 9,81·(6,37·106 / 3,84·108)2 = 9,81·602 = 0,0027 м/с2. С таким ускорением, направленным к центру Зе
Слайд 8

Средний радиус Земли RЗ ≈ 6,37·106 м. Луна находится от центра Земли на расстоянии rЛ ≈ 3,84·108 м. Следовательно, ускорение aЛ, обусловленное земным притяжением, на орбите Луны равно: aл = g(Rз/rл)2 = 9,81·(6,37·106 / 3,84·108)2 = 9,81·602 = 0,0027 м/с2. С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является нормальным ускорением, которое можно рассчитать по кинематической формуле для нормального ускорения: aл = v2/rл = (2πrл/Т)2 / rл = (2πrл /Т)2 / rл =4π2rл / Т 2 = 0,0027 м/с2, где T – период обращения Луны вокруг Земли (27,3 сут). Совпадение результатов расчетов, выполненных разными способами, подтверждает предположение Ньютона о единой природе силы, удерживающей Луну на орбите, и силы тяжести.

Гравитационное поле Луны

Одним из проявлений силы взаимного тяготения является сила тяжести, т. е. сила притяжения тел к Земле. Если на тело действует только сила тяжести, то оно совершает свободное падение. Свободное падение – это движение тела в безвоздушном пространстве (вакууме) под действием только силы тяжести. Ускоре
Слайд 9

Одним из проявлений силы взаимного тяготения является сила тяжести, т. е. сила притяжения тел к Земле. Если на тело действует только сила тяжести, то оно совершает свободное падение. Свободное падение – это движение тела в безвоздушном пространстве (вакууме) под действием только силы тяжести. Ускорение свободного падения (ускорение силы тяжести) – ускорение, которое приобретает свободная материальная точка под действием силы тяжести. Такое ускорение имел бы центр тяжести любого тела при падении тела на Землю с небольшой высоты в безвоздушном пространстве.

Сила тяжести

Если сила притяжения в точности пропорциональна массе, то два тела с разной массой должны одинаково изменять свою скорость в поле тяготения. Опыты с ядрами, сброшенными с «Падающей башни» в Пизе в конце XVI в., подтвердили с доступной для того времени точностью, что в отсутствие сопротивления воздух
Слайд 10

Если сила притяжения в точности пропорциональна массе, то два тела с разной массой должны одинаково изменять свою скорость в поле тяготения. Опыты с ядрами, сброшенными с «Падающей башни» в Пизе в конце XVI в., подтвердили с доступной для того времени точностью, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же.

Опыты Галилея с падающими телами

Пизанская падающая башня
Слайд 11

Пизанская падающая башня

Галилео Галилей (1564 — 1642 гг.)
Слайд 12

Галилео Галилей (1564 — 1642 гг.)

Кинематические характеристики свободного падения
Слайд 13

Кинематические характеристики свободного падения

Движение тела, брошенного вертикально вверх с начальной скоростью v0
Слайд 14

Движение тела, брошенного вертикально вверх с начальной скоростью v0

Тело, вертикально брошенное вверх с уровня Земли (y = 0) со скоростью v0, возвращается на Землю (y = 0) через время следовательно, время подъёма и время падения одинаковы. Во время падения на Землю скорость тела равна –v0, т. е. тело падает на Землю с такой же по модулю скоростью, с какой оно было б
Слайд 15

Тело, вертикально брошенное вверх с уровня Земли (y = 0) со скоростью v0, возвращается на Землю (y = 0) через время следовательно, время подъёма и время падения одинаковы. Во время падения на Землю скорость тела равна –v0, т. е. тело падает на Землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Движение тела, брошенного под углом α к горизонту, разложение вектора начальной скорости тела v0 по координатным осям
Слайд 16

Движение тела, брошенного под углом α к горизонту, разложение вектора начальной скорости тела v0 по координатным осям

Движение тела, брошенного под углом α к горизонту. градусов)
Слайд 17

Движение тела, брошенного под углом α к горизонту

градусов)

Движение тела, брошенного под углом к горизонту, происходит по параболе. В реальных условиях такое движение в значительной степени искажено из-за сопротивления воздуха, которое может существенно уменьшить дальность полёта тела. Баллистическая траектория – траектория движения свободно брошенного тела
Слайд 18

Движение тела, брошенного под углом к горизонту, происходит по параболе. В реальных условиях такое движение в значительной степени искажено из-за сопротивления воздуха, которое может существенно уменьшить дальность полёта тела. Баллистическая траектория – траектория движения свободно брошенного тела под действием только силы тяжести (траекторию движения такого тела в атмосфере при равном или близком к нулю отношении подъёмной силы к аэродинамическому сопротивлению также называют баллистической траекторией).

Баллистическая траектория

Свободное движение тел в гравитационном поле Земли
Слайд 19

Свободное движение тел в гравитационном поле Земли

Список похожих презентаций

Магнитное поле земли

Магнитное поле земли

Магнитные полюса Земли время от времени меняются местами. Магнитные полюсы Земли. Магнитные полюсы Земли много раз менялись местами (инверсии). За ...
Магнитное поле земли и его влияние на живые организмы

Магнитное поле земли и его влияние на живые организмы

Цель: познакомить с магнитным полем Земли и его влиянием на живые организмы. Задачи: 1. Изучить литературу по данной теме; 2. Познакомить с особенностями ...
Магнитное поле Земли

Магнитное поле Земли

Английский ученый Уильям Гильберт, 1600 год, «О магните, магнитных телах и большом магните - Земле». Магнитосфера Земли. ИЗМЕНЕНИЯ МАГНИТНОГО ПОЛЯ ...
Магнитное поле Земли

Магнитное поле Земли

Выучить конспект; Сообщение «Полярные сияния» или «Магнитные бури» (по выбору учащихся). Домашнее задание:. Фронтальный опрос:. Что такое магнит и ...
Магнитное поле Земли

Магнитное поле Земли

Бавкун Т.Н. МБОУ ОСОШ№3 г.Очер. Внешние, расплавленные, слои ядра Земли находятся в постоянном движении. В результате этого в нем возникают молекулярные ...
Магнитное поле Земли

Магнитное поле Земли

Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает ...
Движение тела в поле тяготения Земли

Движение тела в поле тяготения Земли

Алгоритм решения задач. Сделать рисунок, на котором изобразить условно движущееся тело. Показать направления векторов скорости и ускорения. Выбрать ...
Постоянные магниты. Магнитное поле Земли

Постоянные магниты. Магнитное поле Земли

Фронтальный опрос:. Какие магнитные явления вам известны? Какая связь существует между электрическим током и магнитным полем? Что называют магнитной ...
Магнитное поле Земли

Магнитное поле Земли

Нам предстоит доказать, что Земля - это большой магнит. В 1600 г. английский учёный У.Гильберт в своём трактате «О магните» подвёл итог работы всех ...
Поле Земли

Поле Земли

Линии индукции магнитного поля показывают, как направлен вектор индукции магнитного поля в каждой точке пространства вокруг источника магнитного поля. ...
Постоянные магниты. Магнитное поле Земли

Постоянные магниты. Магнитное поле Земли

Ход урока:. Организационный момент, постановка цели, вступительное слово учителя. Проверка домашнего задания: тест, взаимопроверка. Изучение нового ...
Использование теоретических знаний по теме: Движение тела в поле тяготения Земли в военной науке баллистике.

Использование теоретических знаний по теме: Движение тела в поле тяготения Земли в военной науке баллистике.

Содержание. Понятие – баллистики. История возникновения баллистики . Основные законы баллистического движения. Исследование баллистического движения ...
Постоянные магниты Магнитное поле Земли

Постоянные магниты Магнитное поле Земли

ПОСТОЯННЫЕ МАГНИТЫ – тела, сохраняющие длительное время намагниченность. Дугообразный магнит. Полосовой магнит N S. N – северный полюс магнита S – ...
Магнитное поле тока

Магнитное поле тока

ЦЕЛЬ УРОКА. СФОРМИРОВАТЬ ПОНЯТИЕ МАГНИТНОГО ПОЛЯ ЭЛЕКТРИЧЕСКОГО ТОКА. З А Д А Ч И. Систематизировать понятие «магнитное поле» с точки зрения идей ...
Магнитное поле катушки с током. Электромагниты

Магнитное поле катушки с током. Электромагниты

Цели и задачи урока. Цели урока: 1. Познакомить с примерами применения знаний о свойствах магнитного поля. 2. Научить собирать простейший электромагнит, ...
Магнитное поле и его графическое изображение

Магнитное поле и его графическое изображение

Постоянные магниты. N – северный полюс магнита S – южный полюс магнита. Постоянные магниты – тела, сохраняющие длительное время намагниченность. Дугообразный ...
Электроскоп Электрическое поле

Электроскоп Электрическое поле

Электроскоп. материя вещество поле. твердое состояние. жидкое состояние. газообразное состояние. плазма электрическое магнитное гравитационное ядерное. ...
Вариации магнитного поля Земли как составной элемент баз данныхкосмических экспериментов по физике магнитосферы

Вариации магнитного поля Земли как составной элемент баз данныхкосмических экспериментов по физике магнитосферы

ЦЕЛЬ. Рассмотреть требования к базам наземных геофизических данных как элементов программ современных космических проектов по опыту нашей предыдущей ...
Вихревое электрическое поле

Вихревое электрическое поле

Проверка домашнего задания. Сообщение о Э.Х. Ленце ( подготовленное учеником). Физический диктант:. 1. В чем заключается явление электромагнитной ...
Земное магнитное поле

Земное магнитное поле

Цель урока:. Закрепить знания о магнитном поле Земли из курса географии; Познакомиться с новыми понятиями: магнитная буря, магнитная аномалия, магнитные ...

Конспекты

Постоянные магниты. Магнитное поле Земли

Постоянные магниты. Магнитное поле Земли

ГОУ СОШ 503. . ______________________________________________________________. Тема: «Постоянные магниты. Магнитное поле Земли». ...
Постоянные магниты. Магнитное поле Земли

Постоянные магниты. Магнитное поле Земли

Урок - практикум по теме. « Постоянные магниты. Магнитное поле Земли». «Скажи мне – и я забуду,покажи мне – и я запомню,Вовлеки меня и я научусь.». ...
Постоянные магниты. Магнитное поле Земли

Постоянные магниты. Магнитное поле Земли

8 класс. Тема:. . Постоянные магниты. Магнитное поле Земли. Цель:. . Продолжить работу по расширению кругозора в области магнитных явлений, ...
Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли

Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли

Конспект урока физики в 8 классе. Тема урока: «Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли». Тип урока. : изучение ...
Воздушная оболочка Земли

Воздушная оболочка Земли

Урок Воздушная оболочка Земли. Физика 7 класс. . . Учитель: Злобина Л.Л. Тема урока: Воздушная оболочка Земли. Вид урока: . комбинированный. ...
Электромагнитное поле

Электромагнитное поле

Печеркина Светлана Викторовна – учитель физики МКОУ-СОШ № 4 ГО Богданович. . Тема урока: Электромагнитное поле. 9-й класс. . Цели урока. :. ...
Электрическое поле вокруг нас

Электрическое поле вокруг нас

10 класс. Открытый урок по теме «Электрическое поле вокруг нас». Цель:. повторение и обобщение знаний по разделу “Электрическое поле” в игровой ...
Проводники в электростатическом поле. Диэлектрики в электростатическом поле

Проводники в электростатическом поле. Диэлектрики в электростатическом поле

Урок. (2 часа). Тема. :. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Цели. : 1. Разделить все вещества по ...
Магнитное поле

Магнитное поле

Обобщение и закрепление знаний. по теме «Магнитное поле». Цель:. Обеспечить закрепление знаний и способов деятельности учащихся по данной. теме, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 февраля 2019
Категория:Физика
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации