- Зачем нужны ускорители элементарных частиц

Презентация "Зачем нужны ускорители элементарных частиц" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37

Презентацию на тему "Зачем нужны ускорители элементарных частиц" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 37 слайд(ов).

Слайды презентации

Зачем нужны ускорители элементарных частиц. Подготовила: ученица 11 «А» класса МОУ Аннинский лицей Гречишникова Надежда. Учитель: Шевцова Эвелина Николаевна
Слайд 1

Зачем нужны ускорители элементарных частиц

Подготовила: ученица 11 «А» класса МОУ Аннинский лицей Гречишникова Надежда. Учитель: Шевцова Эвелина Николаевна

Ускорители заряженных частиц.
Слайд 2

Ускорители заряженных частиц.

Современные физики-экспериментаторы, как и столетия назад, проводят опыты, однако «приборы» у них совсем других размеров. Объект исследований - микромир, хранящий пока тайны строения материи, пространства и времени. Эксперименты с элементарными частицами помогают развивать фундаментальную науку, а,
Слайд 3

Современные физики-экспериментаторы, как и столетия назад, проводят опыты, однако «приборы» у них совсем других размеров. Объект исследований - микромир, хранящий пока тайны строения материи, пространства и времени. Эксперименты с элементарными частицами помогают развивать фундаментальную науку, а, значит, понять основы мироустройства. Микромир можно исследовать только с помощью «частиц-разведчиков», разогнанных до сверхвысоких энергий. Чтобы получить нужную энергию, требуются мощные электрические и магнитные поля, для чего и сооружают грандиозные по размерам и по сложности машины – ускорители.

Зачем физикам гигантские ускорители ?

Ускорители заряженных частиц

Физика всегда была наукой интернациональной. Современная физика требует столь существенных затрат , что для увеличения научной эффективности экспериментов при тех же деньгах нужно объединение усилий как физиков, так и заинтересованных государств. В таких центрах науки, как Объединённый институт ядер
Слайд 4

Физика всегда была наукой интернациональной. Современная физика требует столь существенных затрат , что для увеличения научной эффективности экспериментов при тех же деньгах нужно объединение усилий как физиков, так и заинтересованных государств. В таких центрах науки, как Объединённый институт ядерных исследований (Россия), Брукхейвенская национальная лаборатория и Фермилаб (США) и других работают исследователи со всего мира. Создана и успешно функционирует Европейская организация по ядерным исследованиям - ЦЕРН (CERN), крупнейшая в мире лаборатория физики высоких энергий, участниками которой являются десятки государств (У России статус страны-наблюдателя). Основным проектом ЦЕРНа в данное время является Большой адронный коллайдер (LHC).

Кому «принадлежат» ускорители ?

Какая польза для практики от экспериментов на ускорителях? В мире насчитывается примерно 17 тысяч ускорителей, но лишь несколько десятков из них относятся к высокоэнергетическим и используются в научных целях. Фундаментальная наука — это основа технологий в долгосрочной перспективе. Подавляющее боль
Слайд 5

Какая польза для практики от экспериментов на ускорителях?

В мире насчитывается примерно 17 тысяч ускорителей, но лишь несколько десятков из них относятся к высокоэнергетическим и используются в научных целях. Фундаментальная наука — это основа технологий в долгосрочной перспективе. Подавляющее большинство – это компактные низкоэнергетические ускорители, использующиеся в целях медицины, дефектоскопии, обеззараживающих облучений и т. д. «Большая» наука уже сегодня дала методики и приборы, которые с успехом служат людям, это: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия и др.

Основные применения ускорителей. Научные исследования. Стерилизация (продуктов питания, медицинского инструмента). Медицина (лечение онкологических заболеваний, радиодиагностика). Производство полупроводниковых устройств (инжекция примесей). Радиационная дефектоскопия. Радиационное сшивание полимеро
Слайд 6

Основные применения ускорителей

Научные исследования. Стерилизация (продуктов питания, медицинского инструмента). Медицина (лечение онкологических заболеваний, радиодиагностика). Производство полупроводниковых устройств (инжекция примесей). Радиационная дефектоскопия. Радиационное сшивание полимеров. Радиационная очистка топочных газов и сточных вод.

Даже в школьной физике можно найти немало примеров удивительной схожести математического описания природных явлений и процессов и проследить аналогии между объектами из разных её областей. В современной физике эта «математическая экономность» природы ещё больше убеждает в том, что всё в природе взаи
Слайд 7

Даже в школьной физике можно найти немало примеров удивительной схожести математического описания природных явлений и процессов и проследить аналогии между объектами из разных её областей. В современной физике эта «математическая экономность» природы ещё больше убеждает в том, что всё в природе взаимосвязано. Физика элементарных частиц, как составная часть физического знания о мире, находится на этапе становления, поэтому остаётся только догадываться, какие тайны и возможности перед нами откроются по мере её развития.

Зачем нужно развивать физику элементарных частиц?

Как работает ускоритель? В основе работы ускорителей заложено взаимодействие заряженных частиц с электрическим и магнитным полями: частицы разгоняются до больших скоростей, затем ускоренные частицы приводят в столкновение с мишенями. Соударение частиц высоких энергий совсем не похоже на столкновение
Слайд 8

Как работает ускоритель?

В основе работы ускорителей заложено взаимодействие заряженных частиц с электрическим и магнитным полями: частицы разгоняются до больших скоростей, затем ускоренные частицы приводят в столкновение с мишенями. Соударение частиц высоких энергий совсем не похоже на столкновение шаров при игре в бильярд. Мир высоких энергий и невообразимо малых расстояний настолько специфичен, что для описания взаимодействий в нём используется квантовая физика. Задача исследователя — восстановить картину события по зафиксированным следам частиц. Результат взаимодействия изучается путём анализа поведения очень большого числа частиц и проводится с помощью ЭВМ

Действие электрического поля на заряженные частицы. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. В однородном электрическом поле движение заряженных частиц происходит с постоянным ускорением, в неоднородном – с переменным. Во всех случаях при от
Слайд 9

Действие электрического поля на заряженные частицы

Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. В однородном электрическом поле движение заряженных частиц происходит с постоянным ускорением, в неоднородном – с переменным. Во всех случаях при отсутствии сил сопротивления энергия, приобретённая изначально покоящейся частицей, равна работе, совершённой силами поля:

Магнитное поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Движение нерелятивистских частиц описывается классической физикой: при α = 90° радиус окружности период обращения Для описания движения релятивистских частиц в однородн
Слайд 10

Магнитное поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Движение нерелятивистских частиц описывается классической физикой: при α = 90° радиус окружности период обращения Для описания движения релятивистских частиц в однородном магнитном поле используется математический аппарат релятивистской физики.

Действие магнитного поля на заряженные частицы

Классификация ускорителей. Современные ускорители классифицируют по разным признакам: По типу ускоряемых частиц (различают электронные ускорители, протонные ускорители и ускорители ионов). По характеру траекторий частиц (линейные ускорители, в которых траектории частиц прямолинейны, и циклические ус
Слайд 11

Классификация ускорителей

Современные ускорители классифицируют по разным признакам: По типу ускоряемых частиц (различают электронные ускорители, протонные ускорители и ускорители ионов). По характеру траекторий частиц (линейные ускорители, в которых траектории частиц прямолинейны, и циклические ускорители, в которых траектории частиц близки к окружности или спирали). По характеру ускоряющего поля. По механизму, обеспечивающему устойчивость движения частиц в перпендикулярных к орбите направлениях. И др.

Основное разделение всех существующих в мире ускорителей - по принципу сообщения энергии. Можно: «нанизать» по прямой однотипные участки, собранные из стандартной, но достаточно сложной и дорогой аппаратуры, чтобы в каждом из них частицы последовательно приобретали новые порции энергии – построить л
Слайд 12

Основное разделение всех существующих в мире ускорителей - по принципу сообщения энергии. Можно: «нанизать» по прямой однотипные участки, собранные из стандартной, но достаточно сложной и дорогой аппаратуры, чтобы в каждом из них частицы последовательно приобретали новые порции энергии – построить линейный ускоритель; заставить пучок частиц проходить один и тот же ускоряющий участок многократно – построить «кольцевой», или «циклический» ускоритель. Для достижения высоких энергий используют кольцевые ускорители, там, где не нужны высокие энергии частиц - линейные ускорители.

Принципы построения ускорителей заряженных частиц

Механические аналогии. На этих рисунках художник попытался изобразить особенности в способах ускорения частиц при помощи различных ускорителей заряженных частиц: а - линейный ускоритель; б - циклотрон; в - синхроциклотрон; г-синхрофазотрон.
Слайд 13

Механические аналогии

На этих рисунках художник попытался изобразить особенности в способах ускорения частиц при помощи различных ускорителей заряженных частиц: а - линейный ускоритель; б - циклотрон; в - синхроциклотрон; г-синхрофазотрон.

Линейный ускоритель. В линейных ускорителях траектории ускоряемых частиц близки к прямым линиям. По всей длине таких ускорителей располагаются ускоряющие станции. Наибольший из работающих линейных ускоритель (электронный ускоритель в Стэнфорде) имеет длину 3,05 км. Линейные ускорители позволяют полу
Слайд 14

Линейный ускоритель

В линейных ускорителях траектории ускоряемых частиц близки к прямым линиям. По всей длине таких ускорителей располагаются ускоряющие станции. Наибольший из работающих линейных ускоритель (электронный ускоритель в Стэнфорде) имеет длину 3,05 км. Линейные ускорители позволяют получить мощные потоки частиц, но при больших энергиях оказываются слишком дорогими.

Стэнфордский линейный ускоритель (SLAC)

Циклический ускоритель. В циклических ускорителях «ведущее» магнитное поле изгибает траектории ускоряемых частиц, свёртывая их в окружности (кольцевые ускорители или синхротроны) или спирали (циклотроны, фазотроны, бетатроны и микротроны). Такие ускорители содержат одно или несколько ускоряющих устр
Слайд 15

Циклический ускоритель

В циклических ускорителях «ведущее» магнитное поле изгибает траектории ускоряемых частиц, свёртывая их в окружности (кольцевые ускорители или синхротроны) или спирали (циклотроны, фазотроны, бетатроны и микротроны). Такие ускорители содержат одно или несколько ускоряющих устройств, к которым частицы многократно возвращаются в течение ускорительного цикла.

Типы циклических ускорителей. В протонных ускорителях на очень высокие энергии к концу периода ускорения скорость частиц увеличивается настолько, что они обращаются по круговой орбите практически с постоянной частотой, поэтому синхрофазотроны для протонов высоких энергий называют «протонными синхрот
Слайд 16

Типы циклических ускорителей

В протонных ускорителях на очень высокие энергии к концу периода ускорения скорость частиц увеличивается настолько, что они обращаются по круговой орбите практически с постоянной частотой, поэтому синхрофазотроны для протонов высоких энергий называют «протонными синхротронами».

Деление осуществляется в зависимости от особенностей режимов ускорения : если частота ускоряющего поля и ведущее магнитное поле постоянны во времени - «циклотрон», если магнитное поле нарастает во время цикла ускорения - «синхротрон», если при этом изменяется и частота ускоряющего поля - «синхрофазотрон».

Зачем нужны ускорители элементарных частиц Слайд: 17
Слайд 17
Устройство циклотрона. Идея циклотрона проста: между двумя полукруглыми полыми электродами (3) - дуантами, приложено переменное электрическое напряжение (4). Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица (1), вращаясь по окружности в магнитном поле, уск
Слайд 18

Устройство циклотрона

Идея циклотрона проста: между двумя полукруглыми полыми электродами (3) - дуантами, приложено переменное электрическое напряжение (4). Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица (1), вращаясь по окружности в магнитном поле, ускоряется на каждом обороте(2) электрическим полем в щели между дуантами, если частота изменения полярности напряжения на дуантах равна частоте обращения частицы (циклотрон является резонансным ускорителем). С увеличением энергии на каждом обороте радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Циклотрон — первый из циклических ускорителей; был разработан и построен в 1931 году американскими физиками Э. Лоуренсом и С. Ливингстоном, за что была присуждена Нобелевская премия в 1939 году. Первый из циклических ускорителей
Слайд 19

Циклотрон — первый из циклических ускорителей; был разработан и построен в 1931 году американскими физиками Э. Лоуренсом и С. Ливингстоном, за что была присуждена Нобелевская премия в 1939 году.

Первый из циклических ускорителей

Коллайдеры. Коллайдеры — ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. В коллайдерах элементарным частицам вещества сообщается наиболее высокая энергия, так как при встречном движении растёт относительная скорость. Это чисто экспериментальные
Слайд 20

Коллайдеры

Коллайдеры — ускорители заряженных частиц на встречных пучках, предназначенные для изучения продуктов их соударений. В коллайдерах элементарным частицам вещества сообщается наиболее высокая энергия, так как при встречном движении растёт относительная скорость. Это чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.

Действующие коллайдеры. Развитие физики высоких энергий в 21-м веке связывается именно с коллайдерами. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира - в США, Японии, ФРГ, а также в Европейской организации по ядерным исследованиям (ЦЕРН), базирующейся в Швейцарии
Слайд 21

Действующие коллайдеры

Развитие физики высоких энергий в 21-м веке связывается именно с коллайдерами. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира - в США, Японии, ФРГ, а также в Европейской организации по ядерным исследованиям (ЦЕРН), базирующейся в Швейцарии (в России (Протвино) к концу 20-го века был сооружен подземный кольцевой тоннель длиной 21 км для российского коллайдера, однако этот проект к началу 21 века был остановлен по ряду причин, прежде всего – финансовых). Самый мощный из действующих находится в США и называется "Тэватрон", поскольку в его кольце длиной более 6 км и с использованием сверхпроводящих магнитов протоны ускоряются до энергии около 1 тераэлектронвольт (1 ТэВ =1000 ГэВ). .

Большой адронный коллайдер
Слайд 22

Большой адронный коллайдер

Большой адронный коллайдер (англ. Large Hadron Collider, LHC; сокращённо БАК) — кольцевой ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. БАК - это самая сложная экспериментальная установка, ког
Слайд 23

Большой адронный коллайдер (англ. Large Hadron Collider, LHC; сокращённо БАК) — кольцевой ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. БАК - это самая сложная экспериментальная установка, когда-либо созданная человеком. Его сложность — не только инженерная, но и научная, ведь его функционирование опирается на множество самых разных физических явлений.

Что такое БАК? БАК

Что ожидают учёные от запуска БАК? Задачи, стоящие перед LHC: Изучение хиггсовского механизма. Подробнее про поиск и изучение бозона Хиггса на LHC Поиск суперсимметрии мира. Изучение топ-кварков. Подробнее про изучение топ-кварков на LHC Изучение кварк-глюонной плазмы. Изучение фотон-адронных и фото
Слайд 24

Что ожидают учёные от запуска БАК?

Задачи, стоящие перед LHC: Изучение хиггсовского механизма. Подробнее про поиск и изучение бозона Хиггса на LHC Поиск суперсимметрии мира. Изучение топ-кварков. Подробнее про изучение топ-кварков на LHC Изучение кварк-глюонной плазмы. Изучение фотон-адронных и фотон-фотонных столкновений. Проверка экзотических теорий.

Идея проекта. Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.
Слайд 25

Идея проекта

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы, расположен под землёй на территории Франции и Швейцарии. БАК размещён в том же туннеле, который
Слайд 26

Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы, расположен под землёй на территории Франции и Швейцарии. БАК размещён в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер (длина окружности 26,7 км, глубина залегания туннеля — от 50 до 175 метров).

Размещение LHC

LHC. В 27-километровом кольцевом подземном тоннеле протоны будут разгоняться «на встречных курсах» до немыслимых прежде в земных условиях энергий, а картины происходящих соударений и взаимодействий будут изучаться в 4-х экспериментальных зонах тоннеля, где размещено оборудование 4-х многоуровневых д
Слайд 27

LHC

В 27-километровом кольцевом подземном тоннеле протоны будут разгоняться «на встречных курсах» до немыслимых прежде в земных условиях энергий, а картины происходящих соударений и взаимодействий будут изучаться в 4-х экспериментальных зонах тоннеля, где размещено оборудование 4-х многоуровневых детекторов вторичных частиц. Эти детекторы называют по их английской аббревиатуре: ATLAS, CMS, ALICE, LHCb, и каждый из них нацелен на свою (в зависимости от типа устанавливаемого научного оборудования) экспериментальную программу.

Эсперимент ATLAS. На сегодняшний день наиболее полную физическую теорию, описывающую все явления в которых участвуют элементарные частицы, называют Стандартной Моделью физики элементарных частиц. За единственным исключением, бозона Хиггса, все частицы Стандартной Модели наблюдались экспериментально.
Слайд 28

Эсперимент ATLAS

На сегодняшний день наиболее полную физическую теорию, описывающую все явления в которых участвуют элементарные частицы, называют Стандартной Моделью физики элементарных частиц. За единственным исключением, бозона Хиггса, все частицы Стандартной Модели наблюдались экспериментально. Эксперимент ATLAS будет проводиться на детекторе с тем же названием и предназначен для поиска сверхтяжёлых элементарных частиц. Физики верят, что эксперименты на детекторах ATLAS и CMS могут пролить свет на физику за рамками Стандартной Модели. Размеры детектора ATLAS: длина - 46 метров, диаметр - 25 метров, общий вес - около 7000 тонн. В проекте участвуют около 2000 ученых и инженеров из 165 лабораторий и универсистетов из 35 стран.

LHC и общество. Одной строкой. Безопасны ли эксперименты на LHC? Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю мат
Слайд 29

LHC и общество

Одной строкой. Безопасны ли эксперименты на LHC? Наиболее часто обсуждается опасность возникновения микроскопических чёрных дыр с последующей цепной реакцией захвата окружающей материи, а также угроза возникновения страпелек, гипотетически способных преобразовать в страпельки всю материю Вселенной. Да, безопасны. Эта уверенность основана на надежно проверенных законах физики, на экспериментальных данных с предыдущих ускорителей, а также на астрофизических данных.

Пуск коллайдера. В августе 2008 года успешно завершились предварительные испытания БАК, а 10 сентября был произведён официальный запуск коллайдера. В 12:28 по московскому времени запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени запу
Слайд 30

Пуск коллайдера

В августе 2008 года успешно завершились предварительные испытания БАК, а 10 сентября был произведён официальный запуск коллайдера. В 12:28 по московскому времени запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

К сожалению, после первого запуска коллайдера произошла авария. Больше года шли ремонтные работы. В ближайшее время коллайдер заработает снова!

Зачем нужны ускорители элементарных частиц Слайд: 31
Слайд 31
Вокруг коллайдера. В CERN есть фолк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечённым созданием коллайдера.
Слайд 32

Вокруг коллайдера

В CERN есть фолк-группа Les Horribles Cernettes (LHC, та же аббревиатура, что и у БАК). Первая песня этого коллектива «Collider» была посвящена парню, который забыл о своей девушке, будучи увлечённым созданием коллайдера.

В научно-фантастическом телесериале Лексс (The Lexx, показ стартовал в апреле 1997 года) в четвёртом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13», на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного
Слайд 33

В научно-фантастическом телесериале Лексс (The Lexx, показ стартовал в апреле 1997 года) в четвёртом сезоне главные герои оказываются на Земле. Обнаруживается, что Земля относится к планетам «типа 13», на последней стадии развития. Планеты типа 13 всегда уничтожают себя сами, в результате неудачного опыта по определению массы бозона Хиггса на сверхмощном ускорителе элементарных частиц, при этом сжимаясь до размеров горошины. В конечном итоге, Земля была уничтожена.

В шестой серии тринадцатого сезона мультсериала «Южный Парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).
Слайд 34

В шестой серии тринадцатого сезона мультсериала «Южный Парк» с помощью магнита из Большого адронного коллайдера была достигнута сверхсветовая скорость на конкурсе Дерби соснового леса (Pinewood Derby).

В фильме «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.
Слайд 35

В фильме «Ангелы и демоны» антивещество из Большого адронного коллайдера было украдено, и похитители хотели взорвать с помощью него Ватикан.

В фильме «Конец света» (англ. End Day) производства BBC последним из четырёх наиболее вероятных сценариев апокалипсиса являлась авария при запуске новейшего ускорителя элементарных частиц, повлекшая за собой образование чёрной дыры.
Слайд 36

В фильме «Конец света» (англ. End Day) производства BBC последним из четырёх наиболее вероятных сценариев апокалипсиса являлась авария при запуске новейшего ускорителя элементарных частиц, повлекшая за собой образование чёрной дыры.

Используемые источники. http://ru.wikipedia.org http://nuclphys.sinp.msu.ru http://pda.korrespondent.net http://elementy.ru/ http://www.lenta.ru/ http://newsbak.ru/ http:// www.scorcher.ru и другие сайты.
Слайд 37

Используемые источники

http://ru.wikipedia.org http://nuclphys.sinp.msu.ru http://pda.korrespondent.net http://elementy.ru/ http://www.lenta.ru/ http://newsbak.ru/ http:// www.scorcher.ru и другие сайты.

Список похожих презентаций

Методы наблюдения и регистрации элементарных частиц

Методы наблюдения и регистрации элементарных частиц

Автор презентации «Методы наблюдения и регистрации элементарных частиц» Помаскин Юрий Иванович - учитель физики МОУ СОШ№5 г. Кимовска Тульской области. ...
Этапы развития физики элементарных частиц

Этапы развития физики элементарных частиц

1 этап. От электрона до позитрона (1897-1932 г.г.). Элементарные частицы – «атомы Демокрита» на более глубоком уровне. Открытие электрона. С 1895 ...
Физика ядра и элементарных частиц

Физика ядра и элементарных частиц

Элементарные частицы, в точном значении этого термина, - это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. ...
Методы наблюдения и регистрации элементарных частиц

Методы наблюдения и регистрации элементарных частиц

Счётчик Гейгера Камера Вильсона. Пузырьковая камера. Фотографические эмульсии. Сцинтилляционный метод. Ионизационная камера. Газоразрядный счётчик ...
Типы элементарных частиц

Типы элементарных частиц

Аристотель считал, что вещество во Вселенной состоит из четырех основных элементов – земли, воздуха, огня и воды. По Аристотелю, вещество непрерывно, ...
Классификация элементарных частиц

Классификация элементарных частиц

Элементарная частица – микрообъект, который невозможно расщепить на составные части. Адроны имеют сложную внутреннюю структуру, но разделить их на ...
Свойства элементарных частиц

Свойства элементарных частиц

Первый этап Второй этап Третий этап Этапы развития. 1897 Открытие электрона (Дж.Томсон). 1919 Открытие протона (Э.Резерфорд). 1928 Поль Дирак предсказал ...
Характеристика элементарных частиц

Характеристика элементарных частиц

ВВЕДЕНИЕ. Открытие элементарных частиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 ...
Классификация элементарных частиц

Классификация элементарных частиц

Элементарные частицы. -микрообъект, который невозможно расщепить на составные части. начиная с 1932г. открыто более 400 частиц Классификация: масса ...
Физика элементарных частиц

Физика элементарных частиц

1897г. – Дж.Томсон открыл электрон. 1919 г.– Э.Резерфорд открыл протон. 1932 – Дж. Чэдвик открывает нейтрон. Начиная с 1932г. Было открыто более 400 ...
Сближение частиц материала при сушке

Сближение частиц материала при сушке

I-удаление связки; II-разложение связки на газообразные продукты; III-полное выжигание; IV-частичное спекание. Схема процесса удаления связки. Процессы, ...
Процесс Пуассона как универсальный вероятностный процесс для описания изменения параметров в системах взаимодействующих частиц

Процесс Пуассона как универсальный вероятностный процесс для описания изменения параметров в системах взаимодействующих частиц

Составные части дальнейшего. 2. Является ли «Прикладная физика» научной специальностью ? 1. «Законно» ли существование кафедр прикладной физики в ...
Методы регистрации заряженных частиц

Методы регистрации заряженных частиц

Сцинтилляционный счетчик. Пузырьковая камера. Камера Вильсона Счетчик Гейгера. Метод толстослойных фотоэмульсий. СЦИНТИЛЛЯЦИЯ. Сцинтилляция – кратковременная ...
Методы регистрации заряженных частиц

Методы регистрации заряженных частиц

Методы регистрации. 1) Счетчик Гейгера 2) Камера Вильсона 3) Пузырьковая камера 4) Метод толстослойных фотоэмульсий. Счетчик Гейгера. Счетчик Гейгера ...
Закон сохранения импульса и системы частиц

Закон сохранения импульса и системы частиц

Законы сохранения. Существуют величины, обладающие важным свойством оставаться в процессе движения механической системы неизменными (т.е. сохраняться): ...
Методы исследования частиц

Методы исследования частиц

СЦИНТИЛЛЯЦИЯ. (от лат. scintillatio — мерцание), кратковременная вспышка люминесценции, возникающая в сцинтилляторах под действием ионизирующих излучений ...
Исследование частиц

Исследование частиц

Методы наблюдения и регистрации элементарных частиц - методы, основанные на свойстве радиоактивных излучений и частиц производить ионизацию атомов. ...
Зачем физика нужна инженеру

Зачем физика нужна инженеру

План. Почему физика нужна инженеру? Пример из истории, иллюстрирующий значение широкого физического горизонта при решении технических вопросов. Итоги: ...
Зачем необходимо экономить электроэнергию?

Зачем необходимо экономить электроэнергию?

. Тема исследования:. ЗАЧЕМ НЕОБХОДИМО ЭКОНОМИТЬ ЭЛЕКТРОЭНЕРГИЮ? ЦЕЛЬ ИССЛЕДОВАНИЯ: - узнать, какие источники энергии используются в нашей области; ...
Движение частиц в магнитном поле

Движение частиц в магнитном поле

1.На что и со стороны чего действует сила Лоренца? 2. Чему равен модуль силы Лоренца? 3. Каково направление силы Лоренца? 4.Как движутся частицы в ...

Конспекты

Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц вещества

Урок № 24 10 класс Дата______. Тема урока. : Термодинамическое равновесие. Температура как мера средней кинетической энергии теплового движения частиц ...
Экспериментальные методы исследования частиц

Экспериментальные методы исследования частиц

Тема урока :. Экспериментальные методы исследования частиц. Цели урока :. Рассмотреть ионизирующее и фотохимическое действие частиц как основы ...
Строение атома: планетарная модель и модель Бора. Квантовые постулаты Бора. Принцип действия и использование лазера. Экспериментальные методы регистрации заряженных частиц

Строение атома: планетарная модель и модель Бора. Квантовые постулаты Бора. Принцип действия и использование лазера. Экспериментальные методы регистрации заряженных частиц

Урок № 59-169 Строение атома: планетарная модель и модель Бора. Квантовые постулаты Бора. Принцип действия и использование лазера. Экспериментальные ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.