Презентация "Вес тела" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Вес тела" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Вес тела. М.Н Гринченко (246-840-069) ГБСОШ № 515
Слайд 1

Вес тела

М.Н Гринченко (246-840-069) ГБСОШ № 515

Закон всемирного тяготения. Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними: F = G∙ m1∙m2/r2, где F – модуль силы гравитационного притяжения между телами с массами m1 и m2, находящимися на рассто
Слайд 2

Закон всемирного тяготения

Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними: F = G∙ m1∙m2/r2, где F – модуль силы гравитационного притяжения между телами с массами m1 и m2, находящимися на расстоянии r друг от друга. G – это коэффициент, который называется гравитационной постоянной. G = 6,67∙10-11 Н∙м2/кг2. Закон всемирного тяготения справедлив для точечных тел (масс), а также для однородных шаров. В последнем случае r - расстояние между центрами шаров. (щелчок) Силы гравитационного притяжения проявляются тогда, когда тела или одно из тел имеют огромные массы. Поэтому закон всемирного тяготения главенствует во вселенной.

Сила тяжести. При применении закона всемирного тяготения для земных условий планету можно рассматривать как однородный шар, а небольшие тела вблизи ее поверхности как точечные массы. Радиус земли обычно полагают приближенно равным 6400 км. Масса Земли равна 6∙1024 кг. Fтяж = mg, где g – ускорение св
Слайд 3

Сила тяжести

При применении закона всемирного тяготения для земных условий планету можно рассматривать как однородный шар, а небольшие тела вблизи ее поверхности как точечные массы. Радиус земли обычно полагают приближенно равным 6400 км. Масса Земли равна 6∙1024 кг. Fтяж = mg, где g – ускорение свободного падения. Вблизи поверхности Земли g = 9,8 м/с2 ≈ 10 м/с2.

Вес тела P – сила, с которой это тело действует на горизонтальную опору или растягивает подвес. Сила реакции опоры N ( Fупр) приложена не к опоре, а к находящемуся на ней телу. Модуль силы реакции опоры N равен модулю веса P по третьему закону Ньютона. Вес тела – частный случай проявления силы упруг
Слайд 4

Вес тела P – сила, с которой это тело действует на горизонтальную опору или растягивает подвес. Сила реакции опоры N ( Fупр) приложена не к опоре, а к находящемуся на ней телу. Модуль силы реакции опоры N равен модулю веса P по третьему закону Ньютона. Вес тела – частный случай проявления силы упругости.

P N (Fупр)

Отличие силы тяжести от веса тела. Пусть цилиндр находится на горизонтальной опоре. На него действуют сила тяжести Fтяж (щелчок) и сила реакции опоры N (щелчок). Сила тяжести Fтяж обусловлена взаимодействием цилиндра с Землей. (щелчок) Вес тела P появляется в результате взаимодействия цилиндра и опо
Слайд 5

Отличие силы тяжести от веса тела

Пусть цилиндр находится на горизонтальной опоре. На него действуют сила тяжести Fтяж (щелчок) и сила реакции опоры N (щелчок). Сила тяжести Fтяж обусловлена взаимодействием цилиндра с Землей. (щелчок) Вес тела P появляется в результате взаимодействия цилиндра и опоры. Вес приложен к опоре. (щелчок) Важнейшей особенностью веса является то, что его значение зависит от ускорения, с которым движется опора или подвес. Вес равен силе тяжести только для покоящегося тела (или тела, движущегося с постоянной скоростью). Если же тело движется с ускорением, то вес может быть и больше, и меньше силы тяжести, и даже равным нулю.

Fтяж Р

Определение веса тела. Задача 1. Определить вес груза массой 500 г, прикрепленного к пружине динамометра, если: а) груз поднимают вверх с ускорением 2 м/с2; б) груз опускают вниз с ускорением 2 м/с2; в) груз поднимают равномерно вверх; г) груз свободно падает.
Слайд 6

Определение веса тела

Задача 1. Определить вес груза массой 500 г, прикрепленного к пружине динамометра, если: а) груз поднимают вверх с ускорением 2 м/с2; б) груз опускают вниз с ускорением 2 м/с2; в) груз поднимают равномерно вверх; г) груз свободно падает.

а) груз поднимают вверх с ускорением 2 м/c2. 1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 2. Обозначим направление вектора ускорения a. (щелчок) 3. Запишем второй закон Ньютона: (1) Fупр + mg = ma. 4. Направим ось ОY по направлению ускоре
Слайд 7

а) груз поднимают вверх с ускорением 2 м/c2

1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 2. Обозначим направление вектора ускорения a. (щелчок) 3. Запишем второй закон Ньютона: (1) Fупр + mg = ma. 4. Направим ось ОY по направлению ускорения. (щелчок) 5. Спроецируем уравнение (1) на ось OY: (Щелчок) (2) Fупр – mg = ma. (щелчок) Из уравнения (2) Fупр = mg + ma. По третьему закону Ньютона Fупр = P. (щелчок) Следовательно, P = mg +ma = m(g + a) = = 0,5 кг∙(10 м/с2 + 2 м/с2) = 6 Н. P > mg.

F упр mg a O Y Fупрy = Fупр mgy = -mg ay =a 6 Н

б) груз опускают вниз с ускорением 2 м/c2. 1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 2. Обозначим направление вектора ускорения a. (щелчок) 3. Запишем второй закон Ньютона: (1) Fупр + mg = ma. 4. Направим ось ОY по направлению ускорени
Слайд 8

б) груз опускают вниз с ускорением 2 м/c2

1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 2. Обозначим направление вектора ускорения a. (щелчок) 3. Запишем второй закон Ньютона: (1) Fупр + mg = ma. 4. Направим ось ОY по направлению ускорения. (щелчок) 5. Спроецируем уравнение (1) на ось OY: (Щелчок) (2) mg - Fупр = ma. (щелчок) Из уравнения (2) Fупр = mg -ma. По третьему закону Ньютона Fупр = P. (щелчок) Следовательно, P = mg -ma = m(g – a) = = 0,5 кг∙(10 м/с2 - 2 м/с2) = 4 Н. P Fупрy = - Fупр mgy = mg ay = a Fупр 4 Н

в) груз равномерно поднимают вверх. 1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 3. Запишем второй закон Ньютона: (1) Fупр + mg = 0, так как движение равномерное. 4. Направим ось ОY вверх. (щелчок) 5. Спроецируем уравнение (1) на ось OY:
Слайд 9

в) груз равномерно поднимают вверх

1. Обозначим силы, действующие на груз: (щелчок) силу тяжести mg и силу упругости со стороны пружины Fупр. 3. Запишем второй закон Ньютона: (1) Fупр + mg = 0, так как движение равномерное. 4. Направим ось ОY вверх. (щелчок) 5. Спроецируем уравнение (1) на ось OY: (Щелчок) (2) Fупр – mg = 0. (щелчок) Из уравнения (2) Fупр = mg. По третьему закону Ньютона Fупр = P. (щелчок) Следовательно, P = mg = 0,5 кг∙10 м/с2 = 5 Н. P = mg.

5 Н

г) груз свободно падает. (щелчок) При свободном падении а = g. Воспользуемся результатом решения задачи 1б: (щелчок) P = m(g – a) =0,5 кг(10 м/с2 – 10 м/с2)= 0 H. Состояние, при котором вес тела равен нулю, называют состоянием невесомости. На тело действует только сила тяжести! (щелчок). Кратковреме
Слайд 10

г) груз свободно падает

(щелчок) При свободном падении а = g. Воспользуемся результатом решения задачи 1б: (щелчок) P = m(g – a) =0,5 кг(10 м/с2 – 10 м/с2)= 0 H. Состояние, при котором вес тела равен нулю, называют состоянием невесомости. На тело действует только сила тяжести! (щелчок)

Кратковременное состояние невесомости

0

Выводы (щелчок). Вес тела и сила тяжести – разные силы. У них разная природа. Эти силы приложены к разным телам: сила тяжести к телу; вес тела к опоре (подвесу). (щелчок) Вес тела совпадает с силой тяжести только тогда, когда тело неподвижно или движется равномерно и прямолинейно, и другие силы, кро
Слайд 11

Выводы (щелчок)

Вес тела и сила тяжести – разные силы. У них разная природа. Эти силы приложены к разным телам: сила тяжести к телу; вес тела к опоре (подвесу). (щелчок) Вес тела совпадает с силой тяжести только тогда, когда тело неподвижно или движется равномерно и прямолинейно, и другие силы, кроме силы тяжести и реакции опоры (натяжение подвеса), на него не действуют. (щелчок) Вес тела больше силы тяжести (Р > mg), если ускорение тела направлено в сторону, противоположную направлению силы тяжести. (щелчок) Вес тела меньше силы тяжести (Р

Задачи для самостоятельного решения. Задача 2. Человек массой 80 кг находится в лифте, скорость которого направлена вверх и равна 1м/с. Ускорение лифта направлено вниз и равно 2 м/с2. Определите вес человека. Влияет ли скорость тела на его вес? Ответ: 640 Н. Задача 3. Шахтная клеть в покое весит 2,5
Слайд 12

Задачи для самостоятельного решения

Задача 2. Человек массой 80 кг находится в лифте, скорость которого направлена вверх и равна 1м/с. Ускорение лифта направлено вниз и равно 2 м/с2. Определите вес человека. Влияет ли скорость тела на его вес? Ответ: 640 Н.

Задача 3. Шахтная клеть в покое весит 2,5 кН. С каким ускорением опускается клеть, если ее вес уменьшился до 2 кН? Ответ: 2 м/с2.

Список похожих презентаций

Вес тела

Вес тела

Мир заполнен взаимодействиями тел. На нашей планете на все тела действует сила тяжести. Опоры, подвесы не позволяют телам упасть. При этом опоры, ...
Вес тела невесомость

Вес тела невесомость

N - Сила реакции опоры. P - Вес тела F - сила тяжести. m - масса тела g - ускорение свободного падения. N Fт P. Вес тела (P) –сила, с которой тело ...
Сила тяжести. Вес тела. Сила упругости

Сила тяжести. Вес тела. Сила упругости

ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ. 1.Что называется силой тяготения? Где она проявляется ? 2. Сформулировать ЗВТ 3. Каковы пределы применимости ЗВТ? 4. Как называется ...
Сила упругости. Закон Гука. Вес тела

Сила упругости. Закон Гука. Вес тела

- начальная длина 0 - конечная длина.
изменение длины, удлинение.
= х. Закон Гука: Сила упругости при растяжении (сжатии) прямо пропорциональна ...
Вес тела

Вес тела

Вы уже знаете:. 1. Что называют силой тяжести. Куда она направлена. 2. Как связаны сила тяжести и масса. 3. Что называют силой упругости. 4. Что такое ...
Задача на расчет веса тела

Задача на расчет веса тела

Задача. Сколько весит канистра с бензином, если ее емкость 10 л, а масса – 800 г? Канистра заполнена доверху. Внимание! Вес – это сила, действующая ...
Способы определения массы тела без весов

Способы определения массы тела без весов

Актуальность темы:. Наука начинается там, где начинают измерять. Точная наука немыслима без меры. Д. И. Менделеев Тела, окружающие нас, состоят из ...
Вес воздуха. Атмосферное давление

Вес воздуха. Атмосферное давление

Атмосфера (от греч. атмос – пар, воздух и сфера – шар) – воздушная оболочка Земли / высотой несколько тысяч километров /. Лишившись атмосферы Земля ...
Способы изменения внутренней энергии тела

Способы изменения внутренней энергии тела

Если над телом совершать работу, то внутренняя энергия этого тела увеличится. Если работу совершает само тело, то его внутренняя энергия уменьшается. ...
Вес и давление воздуха

Вес и давление воздуха

Чем обусловлено давление газов? Что такое атмосфера? Почему она удерживается у Земли? Может ли атмосфера «давить»? Имеет ли атмосфера вес? Как можно ...
Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Расчёт количества теплоты, необходимого для нагревания тела и выделяемого им при его охлаждении

Цель урока:. определить формулу расчёта количества теплоты, необходимого для изменения температуры тела; проанализировать формулу; отработка практических ...
Кристаллические тела

Кристаллические тела

Содержание: 1.Введение:Роль, предмет и задачи физики твердого тела. 2.Что такое кристаллы 3.Физические свойства кристаллических тел 4.Монокристаллы, ...
Масса тела

Масса тела

Масса является – одной из фундаментальных физических величин . Массу тела можно определить двумя способами: А) По взаимодействию двух тел. Б) По притяжению ...
Внутренняя энергия тела и способы её изменения

Внутренняя энергия тела и способы её изменения

Внутренняя энергия тела. Внутренней энергией тела называется суммарная кинетическая энергия движения и потенциальная энергия взаимодействия всех частиц, ...
Кристаллические и аморфные тела

Кристаллические и аморфные тела

Свойства твердых тел. Алмаз Друза мариона. Крупнозернистый кристалл серы. - это твёрдые тела, атомы или молекулы которых занимают определённые, упорядоченные ...
Взаимодействие тел. Масса тела

Взаимодействие тел. Масса тела

Содержание. 1.Взаимодействие тел 2.Инертность тел 3.Масса тела 4.Способы определения массы тела. 5.Закрепление. 6.Домашнее задание. Взаимодействие ...
Внутренняя энергия тела

Внутренняя энергия тела

Теплопроводность Конвекция. Способы изменения внутренней энергии тела. Излучение. Совершение механической работы. Теплопередача. Установить соответствие. ...
Взаимодействие тел. Масса тела

Взаимодействие тел. Масса тела

Цели урока:. Обучающая: Познакомить уч-ся с взаимодействием тел и изучить понятие масса Развивающая: развивать физическое мышление Воспитывающая: ...
Взаимные превращения жидкости, пара и твёрдого тела

Взаимные превращения жидкости, пара и твёрдого тела

Агрегатные состояния вещества. В обычных условиях любое вещество пребывает в одном из трех состояний – твердом, жидком или газообразном. Чтобы вещество ...
Вес воздуха. Атмосферное давление. Опыт Торричелли

Вес воздуха. Атмосферное давление. Опыт Торричелли

“Атмосфера оживляет Землю. Океаны, моря, реки, ручьи, леса, растения, животные, человек – все живет в атмосфере и благодаря ей. Земля плавает в воздушном ...

Конспекты

Вес тела в разных условиях движения. Невесомость. Перегрузка

Вес тела в разных условиях движения. Невесомость. Перегрузка

МБОУ «СОШ №4 г.Вельск». Архангельская область. Романова Елена Вениаминовна. учитель физики. Урок в 10 классе. [Слайд 1]. Тема: Вес тела в разных ...
Вес тела

Вес тела

Урок 4. Вес тела. Цель:. понятие веса тела, вес тела, находящегося на неподвижной или равномерно движущейся опоре. Демонстрации:. . действие ...
Вес тела. Невесомость

Вес тела. Невесомость

План-конспект урока по физике. Тема урока:. «Вес тела. Невесомость». ФИО учителя:. Сыпченко Геннадий Викторович. Место работы:. МОУ «Средняя ...
Измерение массы тела на рычажных весах

Измерение массы тела на рычажных весах

Тема:. Измерение массы на весах. Лабораторная работа «Измерение массы тела на рычажных весах». Методические цели:. Образовательные:. способствовать ...
Измерение массы тела на рычажных весах

Измерение массы тела на рычажных весах

ГБОУ ООШ с. Тяглое Озеро. Урок физики. . в 7 классе по теме. «Измерение массы тела на рычажных весах». Учитель физики:. ...
Масса тела. Измерение массы тела на рычажных весах

Масса тела. Измерение массы тела на рычажных весах

Урок Скирневской О.Г. «Масса тела. Измерение массы тела на рычажных весах». . Тема: Масса тела. Измерение массы тела на рычажных весах. Класс: ...
Работа силы, действующей в направлении движения тела

Работа силы, действующей в направлении движения тела

Предмет Физика. Класс 7. Дата 5 марта 2014 года. . Урок №1. Тема урока: Работа силы, действующей в направлении движения тела. Цель урока:. ...
Атмосферное давление. Вес воздуха

Атмосферное давление. Вес воздуха

. Конспект урока по физике в 7 классе. . по теме «Атмосферное давление. Вес воздуха». Автор:. . Понамарёва Елена Владимировна,. Должность:. ...
Масса как мера инертности тела

Масса как мера инертности тела

Муниципальное бюджетное общеобразовательное учреждение. . «Пичаевская СОШ». Пичаевского района, Тамбовской области. Конспект урока по ...
Строение твердых тел. Кристаллические и аморфные тела

Строение твердых тел. Кристаллические и аморфные тела

Конспект урока. Строение твердых тел. Кристаллические и аморфные тела. Цель: сформировать знания о различии и строении твердых тел. Демонстрации: ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.