- Радиация и ее влияние на живые организмы

Презентация "Радиация и ее влияние на живые организмы" (9 класс) по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Радиация и ее влияние на живые организмы" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

МОУ СОШ №44 Презентация На тему: Радиация и ее влияние на живые организмы Выполнили ученики: Девивье Анатолий и Овчаров Константин 9 класса. г.Томск.
Слайд 1

МОУ СОШ №44 Презентация На тему: Радиация и ее влияние на живые организмы Выполнили ученики: Девивье Анатолий и Овчаров Константин 9 класса

г.Томск.

Радиация окружает нас везде. Мы родились и живём в среде естественных и искусственных проникающих радиоактивных излучений.
Слайд 2

Радиация окружает нас везде. Мы родились и живём в среде естественных и искусственных проникающих радиоактивных излучений.

Обычно человек подвергается двум видам облучения: внешнему и внутреннему. К внешним источникам относят космическое облучение , а к внутренним , когда в организм человека попадают продукты питания , воздух заражённый радиацией..
Слайд 3

Обычно человек подвергается двум видам облучения: внешнему и внутреннему. К внешним источникам относят космическое облучение , а к внутренним , когда в организм человека попадают продукты питания , воздух заражённый радиацией..

Человек в естественных условиях облучается от источников как внешних , так внутренних . Также существует искусственная радиация т.е. созданная человеком. Она может идти как во вред человеку , так и в пользу (для лечения серьёзных заболеваний). Радиация сама по себе может быть очень полезной для чело
Слайд 4

Человек в естественных условиях облучается от источников как внешних , так внутренних . Также существует искусственная радиация т.е. созданная человеком. Она может идти как во вред человеку , так и в пользу (для лечения серьёзных заболеваний). Радиация сама по себе может быть очень полезной для человека, конечно нужно уметь ей пользоваться чтобы использовать для оздоровительных процедур и в разнообразных предприятиях..

Радиоактивность (от латинского radio - излучаю, radus - луч и activus - действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева. «Радиоактивность - это самопроизвольное (спонтанное) превращение неустойчивого и
Слайд 5

Радиоактивность (от латинского radio - излучаю, radus - луч и activus - действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева. «Радиоактивность - это самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно изотоп другого элемента); при этом происходит испускание электронов, протонов, нейтронов или ядер гелия (а-частиц)»

Сущностью открытого явления было в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбужденном долгоживущем состоянии
Слайд 6

Сущностью открытого явления было в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбужденном долгоживущем состоянии

Радиация Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад. В 1896 году французский ученый Анри Беккерель случайно обнаружил, чт
Слайд 7

Радиация Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад. В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина “радиоактивность”) и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома.

Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра - плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и
Слайд 8

Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра - плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтральность атома. Количество нейтронов может варьироваться, и в зависимости от этого меняется стабильность изотопов. Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов ( -частицы) называют - излучением, испускание электрона -  -излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый  -излучением. 1.1 Основные термины и единицы измерения (терминология НКДАР) Радиоактивный распад - весь процесс самопроизвольного распада нестабильного нуклида. Радионуклид - нестабильный нуклид, способный к самопроизвольному распаду. Период полураспада изотопа - время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике. Радиационная активность образца - число распадов в секунду в данном радиоактивном образце; единица измерения - беккерель (Бк). Поглощенная доза единица измерения в системе СИ - грэй (Гр) - энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы.

Эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма. Эффективная эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - эквивалентная доза, умноженная на коэ
Слайд 9

Эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма. Эффективная эквивалентная доза единица измерения в системе СИ - зиверт (Зв) - эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению. Коллективная эффективная эквивалентная доза единица измерения в системе СИ - человеко-зиверт (чел-Зв) - эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации.

Глава II Влияние радиации на организмы Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частично
Слайд 10

Глава II Влияние радиации на организмы Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей. Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один - два сантиметра; наиболее безобидное -излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца. Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения: 0,03 - костная ткань 0,03 - щитовидная железа 0,12 - красный костный мозг 0,12 - легкие 0,15 - молочная железа 0,25 - яичники или семенники 0,30 - другие ткани 1,00 - организм в целом. Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз. В таблице 1 приведены крайние значения допустимых доз радиации:

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через
Слайд 11

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну-две недели, а доза в 3-5 грамм грозит обернуться летальным исходом примерно половине облученных. Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения. В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но
Слайд 12

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения. В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения. Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным яв
Слайд 14

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным. Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку: объем легочной вентиляции очень большой значения ко
Слайд 15

Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку: объем легочной вентиляции очень большой значения коэффициента усвоения в легких более высоки.

Естественные источники радиации Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомн
Слайд 16

Естественные источники радиации Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14). Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения. Уровни радиационного излучения неодинаковы для различных областей. Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение.

Источники радиации, созданные человеком (техногенные) Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эт
Слайд 17

Источники радиации, созданные человеком (техногенные) Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение. Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия. Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника - рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов. Неизвестно точное количество людей, подвергающихся подобным обследованиям и лечению, и дозы, получаемые ими, но можно утверждать, что для многих стран использование явления радиоактивности в медицине остается чуть ли не единственным техногенным источником облучения. В принципе облучение в медицине не столь опасно, если им не злоупотреблять. Но, к сожалению, часто к пациенту применяются неоправданно большие дозы. Среди методов, способствующих снижению риска, уменьшение площади рентгеновского пучка, его фильтрация, убирающая лишнее излучение, правильная экранировка и самое банальное, а именно исправность оборудования и грамотная его эксплуатация.

Человек- кузнец своего счастья, и поэтому, если он хочет жить и выживать, то он должен научиться безопасно использовать этого “джина из бутылки” под названием радиация. Человек еще молод для осознания дара, данного природой ему. Если он научится управлять им без вреда для себя и всего окружающего ми
Слайд 18

Человек- кузнец своего счастья, и поэтому, если он хочет жить и выживать, то он должен научиться безопасно использовать этого “джина из бутылки” под названием радиация. Человек еще молод для осознания дара, данного природой ему. Если он научится управлять им без вреда для себя и всего окружающего мира, то он достигнет небывалого рассвета цивилизации. А пока нам необходимо прожить первые робкие шаги, в изучении радиации и остаться в живых, сохранив накопленные знания для следующих поколений.

Список использованной литературы Лисичкин В.А., Шелепин Л.А., Боев Б.В. Закат цивилизации или движение к ноосфере (экология с разных сторон). М.; “ИЦ-Гарант”, 1997. 352 с. Миллер Т. Жизнь в окружающей среде/Пер. с англ. В 3 т. Т.1. М., 1993; Т.2. М., 1994. Небел Б. Наука об окружающей среде: Как уст
Слайд 19

Список использованной литературы Лисичкин В.А., Шелепин Л.А., Боев Б.В. Закат цивилизации или движение к ноосфере (экология с разных сторон). М.; “ИЦ-Гарант”, 1997. 352 с. Миллер Т. Жизнь в окружающей среде/Пер. с англ. В 3 т. Т.1. М., 1993; Т.2. М., 1994. Небел Б. Наука об окружающей среде: Как устроен мир. В 2 т./Пер. с англ. Т. 2. М., 1993. Пронин М. Бойтесь! Химия и жизнь. 1992. №4. С.58. Ревелль П., Ревелль Ч. Среда нашего обитания. В 4 кн. Кн. 3. Энергетические проблемы человечества/Пер. с англ. М.; Наука, 1995. 296с. Экологические проблемы: что происходит, кто виноват и что делать?: Учебное пособие/Под ред. проф. В.И. Данилова-Данильяна. М.: Изд-во МНЭПУ, 1997. 332 с. Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред. проф. В.И.Данилова-Данильяна. В 2 кн. Кн. 1. М.: Изд-во МНЭПУ, 1997. - 424 с. Т.Х.Маргулова “Атомная энергетика сегодня и завтра” Москва: Высшая школа, 1996

Список похожих презентаций

Влияние веществ, содержащихся в выхлопных газах автомобилей, на живые организмы

Влияние веществ, содержащихся в выхлопных газах автомобилей, на живые организмы

Шумовое воздействие. Эрозия почвенного покрова. Опасность движения ДТП. Пары топлива из баков. Отторжение земель под дороги, станции, автопарки и ...
Влияние живой и мёртвой воды на живые организмы

Влияние живой и мёртвой воды на живые организмы

Как появилась вода…. Миллиарды лет назад в холодном газопылевом облаке, со временем сгустившемся, уплотнившемся и ставшем Землей, уже содержалась ...
Влияние радиации на живые организмы

Влияние радиации на живые организмы

Влияние радиации через продукты питания. Радиоактивные вещества, попадающие на поверхность продуктов, если они не упакованы, или через щели и неплотности ...
Влияние никотина на живые организмы

Влияние никотина на живые организмы

Проблема исследования: Моя исследовательская работа полностью посвящена вреду курения, я считаю, что наше поколение мало знает об этом. Именно поэтому ...
Влияние радиации на живые организмы

Влияние радиации на живые организмы

влияние радиации на живые организмы. Содержание Радиация Виды излучении Методы защиты барьеры дозиметрический контроль Пищевые добавки от радиации ...
Запахи. влияние запахов на живые организмы

Запахи. влияние запахов на живые организмы

Научный руководитель и консультант Оборина Галина Алексеевна учитель химии МОУ СОШ № 17 г. Благовещенска. Влияние запахов на живые организмы. Запахи. ...
Абиотические факторы среды. Влияние света и температуры на живые организмы

Абиотические факторы среды. Влияние света и температуры на живые организмы

Содержание: Понятие об экологических факторах, их классификация. Влияние экологических факторов на биосферу. Примеры абиотических факторов: свет. ...
Влияние живой и мёртвой воды на живые организмы

Влияние живой и мёртвой воды на живые организмы

живая вода способствует лучшему росту растений, а мертвая вода их убивает. Цель работы:. изучить влияние живой и мёртвой воды на рост растений. Гипотеза:. ...
Абиотические факторы среды и их влияние на живые организмы

Абиотические факторы среды и их влияние на живые организмы

Экологические факторы. 1. Абиотические (факторы неживой природы) – температура, свет, влажность, концентрация солей, давление, осадки, рельеф и т.д. ...
Экологически факторы и живые организмы

Экологически факторы и живые организмы

Как сказал П. Агесс «Экология наука не только естественная, она должна включать в себя и другие дисциплины, такие, например, как право, экономика, ...
Как размножаются живые организмы

Как размножаются живые организмы

Цель урока:. Повторить, обобщить, закрепить изученный материал по теме «Как размножаются живые организмы». Все живые организмы размножаются. В процессе ...
Как классифицируют живые организмы

Как классифицируют живые организмы

СОРОКА ВОРОН. Царства живой природы. Царство Бактерии Царство Грибы Царство растения Царство Животные. РОДСТВЕННЫЕ ВИДЫ КЛЕВЕР ЛУГОВОЙ КЛЕВЕР ПОЛЗУЧИЙ ...
Лишайники: удивительные организмы и индикаторы состояния окружающей среды

Лишайники: удивительные организмы и индикаторы состояния окружающей среды

Жозеф Питон де Турнефор Впервые объединил лишайники в отдельную группу. Эрик Ахариус «Отец лихенологии», выделил лишайники в самостоятельную группу ...
Человек как житель биосферы и его влияние на природу земли

Человек как житель биосферы и его влияние на природу земли

Цели урока:. Углубить и расширить знания о взаимосвязи человека и окружающей среды. Развивать умения активно воспринимать изучаемый материал, обобщать, ...
Виды загрязнений и их влияние на человека

Виды загрязнений и их влияние на человека

1.Бывший керамический завод. Вид загрязнения : Радон. Радон является второй по значимости причиной развития рака легких. Вызываемые радоном случаи ...
Вредные привычки и их влияние на здоровье человека

Вредные привычки и их влияние на здоровье человека

Обоснование выбора темы. Каждый человек ответственен за свое здоровье. Именно от него самого зависит его физическое и психическое состояние, а значит ...
Трансгенные организмы

Трансгенные организмы

Содержание: Что такое трансгенный организм? Цель создания? Использование трансгенных организмов. Трансгенные бактерии. Транс генные растения. Трансгенные ...
Одноклеточные и многоклеточные организмы

Одноклеточные и многоклеточные организмы

Клетка – обязательная простейшая единица, которая лежит в основе строения, развития и всей жизнедеятельности живого организма. Клетки растений. Строение ...
Одноклеточные и многоклеточные организмы под микроскопом

Одноклеточные и многоклеточные организмы под микроскопом

Оборудование: Цель:. познакомиться с одноклеточным и многоклеточными организмами. микропрепараты, микроскоп, таблицы. Инструкция по технике безопасности. ...
Земля и антропогенное влияние на нее

Земля и антропогенное влияние на нее

. Устойчивое развитие. Устойчивое развитие - развитие, при котором удовлетворяются потребности настоящего времени, но права будущих поколений на такие ...

Конспекты

Влияние абиотических факторов на живые организмы

Влияние абиотических факторов на живые организмы

Государственное бюджетное общеобразовательное учреждение. средняя образовательная школа № 243. . Адмиралтейского района Санкт-Петербурга. ...
Где обитают живые организмы

Где обитают живые организмы

Урок 5. . . Глава. II. . . ОБОЛОЧКА ПЛАНЕТЫ, ОХВАЧЕННАЯ ЖИЗНЬЮ. Тема:. Где обитают живые организмы. . Цели:. Ознакомить учащихся с основными ...
Бактерии - живые организмы

Бактерии - живые организмы

МБОУ «Средняя общеобразовательная школа №15» г.Усть-Илимск Иркутская область. Конспект урока по теме: «Биогенетический закон». для учащихся ...
Человек как житель биосферы и его влияние на природу Земли

Человек как житель биосферы и его влияние на природу Земли

Использование демократичных приемов на уроках биологии. . Урок в 9 классе. Тема: «Человек как житель биосферы и его влияние на природу Земли». ...
Абиотические факторы среды и их влияние на организм

Абиотические факторы среды и их влияние на организм

Урок «Абиотические факторы среды и их влияние на организм». 9 класс. Цели занятия:. Образовательная:. Сформировать понятие об экологических ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.