- Степень с целым показателем и её свойства

Конспект урока «Степень с целым показателем и её свойства» по математике для 8 класса

Урок в 8 классе по теме «Степень с целым показателем и её свойства»


Цели урока:

  • Образовательные: познакомить  учащихся  с понятием  степени  с  целым   показателем   и  её свойствами. Научить применять изученные понятия и свойства при вычислениях и преобразованиях.

  • Развивающие: развивать умения применять теоретические знания на практике. Развивать познавательную активность, мышление, внимание и память, умение слушать товарища, математическую речь.

  • Воспитательные: воспитание интереса к  математике, активности, аккуратности, дисциплинированности, умение общаться.

Ход урока.

1. Организационный этап.

2. Мотивация урока.

Надеюсь, что сегодня на уроке нас ждет и успех, и радость. И мы, работая в коллективе, покажем свою одарённость.

Будьте внимательны в течение урока. Думайте, спрашивайте, предлагайте – так как дорогой к истине мы будем идти вместе.

3. Актуализация изучения темы.

А начать наш урок я хотела бы с выяснения вопроса: встречался кто-нибудь из вас в повседневной жизни со словом «степень»? Давайте приведем примеры словосочетаний из жизни, в которых оно используется, и попытаемся с их помощью разобраться, что же в жизни означает слово «степень».

Ответы учащихся:

- точности

-степень усвоения

- качества знаний

Учитель

  • Каким же близким по смыслу словом можно заменить слово “степень”?

  • А где мы можем уточнить его значение?

Ученик :(в толковом словаре)

-  Степень  – это мера, сравнительная величина; уровень чего-нибудь.

- Слово “ степень ” находит широкое применение  и  в  математике .

Группа «Информаторы»

1. Дайте определение  степени   с   натуральным   показателем . ( Степенью  числа а  с   натуральным   показателем  n, большим 1, называется произведение n множителей, каждый из которых равен а.)

2. Как называется число, которое возводим в  степень ? (Число, которое возводим в степень, называют основанием)

3. Как называется число, в которое возводим степень? (Число, в которое возводим степень, называют  показателем )

4. Какое число получаем при возведении в степень положительного числа? (При возведении в степень положительного числа получаем положительное число)

5. Какое число получаем при возведении отрицательного числа с четным  показателем ? (При возведении отрицательного числа с четным  показателем  получаем положительное число)

6. Какое число получаем при возведении отрицательного числа с нечетным  показателем ? (При возведении отрицательного числа с нечетным  показателем  получаем отрицательное число)

Также устно, с полным объяснением, вычислить:

http://oo3e.mail.yandex.net/static/b4775309649b4724b18b6b463b734093/tmpcSEStQ_html_m4566fb51.png

Решить №

4. Изучение нового материала.



Взгляните на число. http://oo3e.mail.yandex.net/static/b4775309649b4724b18b6b463b734093/tmpcSEStQ_html_1380c5a2.gif

. Как вы думаете, это положительное или отрицательное число?

"Не верь глазам своим" - сказал бы Козьма Прутков тому, кто считает это число отрицательным.  И  сейчас мы разберемся, что вообще означает такая запись.

Историческая справка .(Информаторы) Отрицательные  показатели   степени  ввел еще в 15 веке  математик  Шюке. Англичанин Джон Валлис впервые рассмотрел вопрос о целесообразности употребления отрицательных  показателей . Исаак Ньютон стал применять их систематически. В одном из писем в 1676 г. Ньютон указал: "Как алгебраисты вместо АА, ААА  и  т.д. пишут А2, А3 и т.д., так я ... вместо 1/а, 1/а2, 1/а3 пишу а-1, а-2, а-3и т.д."

Задание 1. Представьте каждое из этих чисел в виде степени числа 10:

...1000,100,10, 1, 1/10, 1/100,1/1000...

(... 103, 102, 101, 10°, 1/101, 1/102, 1/103...)

Задание 2. Подпишите под этими числами  показатели  степеней:

3, 2, 1, 0,....

Продолжив этот ряд, мы получим числа -1, -2, -3  и  т.д.

Сравним  показатели  соседних степеней.  Показатель  каждой степени на 1 меньше следующего. Распространим этот закон на числа справа от 10°. Получим: 1/101 = 10-1, 1/102 = 10-2...

Получается такая строка:

10-3, 10-2, 10-1, 10°, 101, 102, 103...

Вопрос. Можем ли мы взять  степень  с другим основанием? С любым?

Ответ. Кроме 0.

Вывод. Итак, мы можем это соглашение распространить на любое число а, отличное от нуля. Запишите в тетради формулу:

http://oo3e.mail.yandex.net/static/b4775309649b4724b18b6b463b734093/tmpcSEStQ_html_1825c14b.gif










Работа  с учебником

Задание3.. Вычисли значение выражения:http://oo3e.mail.yandex.net/static/b4775309649b4724b18b6b463b734093/tmpcSEStQ_html_mc8597d.gif


обобщить алгоритм вычисления значений такого типа выражений (содержащих  степень  с отрицательным  показателем ).

1) Выполнить возведение в  степень ;

2) Выполнить действия с дробями;

3) Заменить  степени  с отрицательными  показателями  на  степени   с   натуральными   показателями .

Верная последовательность выполнения шагов:

  1. Заменить  степени  с отрицательными  показателями  на  степени   с   натуральными   показателями ;

  2. Выполнить возведение в  степень ;

3) Выполнить действия с дробями.

Вопрос. Имеет ли смысл выражение 0-5?

Ответ. Нет, т.к. основание  степени  с отрицательным  показателем  должно быть отлично от нуля.

Вывод. 0n имеет смысл только при положительных значениях n.

Группа «Великаны»

Наша система счисления создана индусами. Она была завезена в Европу арабами и потом распространилась по всему миру.

Система названий, принятая почти во всем мире, связана с названием классов.

1 класс – класс единиц.

2 класс – класс тысяч.

3 класс – класс миллионов.

4 класс – класс биллионов или миллиардов.

5 класс – класс триллионов.

6 класс – класс квадриллионов.

7 класс – класс квинтиллионов.

8 класс – класс секстиллионов.

Далее идут септиллион, октиллион, нониллион, дециллион. Конечно, зная такие огромные числа, в этом случае запись числа занимает много места и мало наглядна, неудобно было бы с ними работать . Поэтому решено было изменить написание таких чисел. При записи больших чисел часто используют степень числа 10.

Таким образом,

Тысяча – 1000 = 103

Миллион – 1000000 - 106

Биллион – 1000000000=109

Триллион - 1000000000000 = 1012

Квадриллион – 1000000000000000=1015

Квинтиллион – 1000000000000000000 = 1018

Секстиллион – 1000000000000000000000=1021

Септиллион – 1000000000000000000000000=1024

Октиллион – 1000000000000000000000000000=1027.

Например, большим числом выражается масса Земли –
5980000000000000000000000 кг.


Давайте с помощью таблицы его прочитаем.

На доске таблица названий больших чисел.

МИЛЛИОН – 6

МИЛЛИАРД – 9

ТРИЛЛИОН – 12

КВАДРИЛЛИОН – 15

КВИНТИЛЛИОН – 18

СЕКСТИЛЛИОН – 21

СЕПТИЛЛИОН – 24

ОКТИЛЛИОН – 27

НОНИЛЛИОН – 30

ДЕЦИЛЛИОН – 33

Величайший числовой гигант скрывается в том воздухе, которым мы дышим. Каждый кубический сантиметр воздуха, каждый наперсток заключает в себе 27 квинтиллионов (т. е. 27 с 18 нулями) мельчайших частиц, называемых «молекулами».

Невозможно даже представить себе, как велико это число. Если бы на свете было столько людей, для них буквально недостало бы места на нашей планете. В самом деле: поверхность земного шара, считая все его материки и океаны,- равна 500 миллионам кв. км. Раздробив  в квадратные метры,  получим 500 000 000 000 000кв.м.

Поделим 27 квинтиллионов на это число, и мы получим 54 000. Это означает, что на каждый квадратный метр земной поверхности приходилось бы более 50 тысяч человек!

Но эти названия почти не используются. Астрономы и физики, имеющие дело с большими числами, предпочитают записывать числа с помощью степени числа десять.

Есть еще одно число – 10100. Для этого числа придумано специальное название – гугол.

Примеры некоторых числовых великанов.

1). 509 000 000 кв.км – поверхность земного шара.
2). 149 500 000 км – расстояние от Земли до Солнца.
3). 6 000 000 000 000 000 000 000 т – масса земного шара.

Мы с трудом ориентируемся в больших числах, даже миллиона мы как следует себе не представляем.

Каждый из вас умеет складывать, отнимать, умножать и делить числа, которые выражены многими тысячами и даже миллионами.

Как представить себе 1 000 000 учащихся? Трудно? Чтобы это представить, посчитайте, на сколько километров протянулась бы шеренга в 1 000 000 учащихся, если бы каждые 2 из них заняли 1м. Почти от Москвы до Санкт-Петербурга протянулась бы эта шеренга!

Миллион можно назвать карликом по сравнению с таким числом, как миллиард..

Миллиард – это не просто великан, а великанище. Ведь совсем небольшой промежуток времени – 1 минута. А миллиард таких минут – эта более 19 столетий.

Секунда времени в сравнении с часом нам кажется мгновением. Но миллиард секунд – это около 32 лет.
Легенда о шахматной доске.

Шахматы – одна из самых древних игр. Эта игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен её остроумием. Царь хотел лично наградить изобретателя за удачную выдумку.

Изобретатель, его звали Сета, явился к трону повелителя. Это был скромно одетый ученый, получавший средства к жизни от своих учеников. Сета удивил царя беспримерной скромностью своей просьбы. Сета попросил выдать ему за первую клетку шахматной доски одно пшеничное зерно, за вторую клетку – 2 зерна, за третью – 4, за четвертую – 8, за пятую – 16, за шестую – 32 и т.д.

Царь с раздражением сказал, что эта просьба недостойна его щедрости.

Придворные математики очень долго вели подсчет. Это оказалось чудовищное число: 18 446 744 073 709 551 615 (18 квинтиллионов 446 квадриллионов 744 триллиона 73 биллиона 709 миллионов 551 тысяча 615.


Группа «Стандарты»

Стандарт, это образец эталон, с которого сопоставляется, т. е. когда говорят о стандарте людям легче представить, о чем идет речь.

Стандартный вид числа. В окружающем нас мире мы сталкиваемся с очень большими и с очень маленькими числами. Где вы встречались с такими числами? Если числа очень большие или маленькие удобно ли записывать числа в таком виде? Почему? (занимает много места, времени для записи, сложно запомнить)

Как вы считаете, какой выход нашли из этой ситуации. Записать с помощью степени.

598 000 000 000 000 000

Попробуйте записать это число короче.

598∙1015, 59,8∙1016, 5,98∙1017, 0,598∙1018

Все результаты верны. Подумайте, посоветуйтесь и выскажите свое мнение, какая же запись может быть стандартной.

5,98∙1017 –почему?

Мы представили число в виде двух множителей. Первый множитель число принадлежащее промежутку от 1 до 10 «положительный». Второй множитель число 10 в любой  степени  тоже положительно, а при умножении двух положительных чисел получается только положительное число.

-Итак, стандартным видом числа А называется запись вида а∙10n ,где 1≤ а

n- порядок числа, n-целое.

Группа «Умники»

- Ребята какие же действия можно выполнять с выражениями содержащими степень

Пример 2. Найти значение выражения

\frac{ a^{17} + b^{18} + c^{19} }{ a^{18} - b^{37} + c^{1}} + \frac{(10c)^{4}}{(a+3)^{4}}

при a = - 1, b = 0, c = 1.




9. Итоги урока. Д/з.

Интегрированное домашнее задание

Творческий уровень: составьте математическую шифровку, используя  степень  с  целым  отрицательным  показателем .

10.Рефлексия.




























Здесь представлен конспект к уроку на тему «Степень с целым показателем и её свойства», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика (8 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Степень с натуральным показателем и ее свойства

Степень с натуральным показателем и ее свойства

Данный урок алгебры проводится для учащихся 7 класса. Тема. : Степень с натуральным показателем и ее свойства. . . Цель: Учебная – повторить ...
Степень с рациональным показателем и ее свойства

Степень с рациональным показателем и ее свойства

Марьевский филиал. МОУ Ивановской средней. общеобразовательной школы. Алгебра 9 класс. . Молчанова. . Валентина Алексеевна. ...
Свойства степени с натуральным показателем

Свойства степени с натуральным показателем

Учитель: Быкова М.Н. Класс:. 7. Тема урока. :. Свойства степени с натуральным показателем. . . Тип урока:.     Повторительно-обобщающий урок. ...
Число е. Функция у=е, её свойства и график

Число е. Функция у=е, её свойства и график

П х. . ЛАН-КОНСПЕКТ УРОКА. . «Число е. Функция у=е, её свойства и график» . ФИО. . . Грудинина Мария Михайловна. . . . ...
Свойства степени с натуральным показателем

Свойства степени с натуральным показателем

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №7» г. Саянска. Тема урока: Обобщающий урок ...
Свойства степени с натуральным показателем

Свойства степени с натуральным показателем

МАОУ Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. Учитель математики Павлова Людмила Викторовна. ...
Логарифмическая функция, её график и свойства

Логарифмическая функция, её график и свойства

Технологическая карта урока. Аттестуемый педагог: Петрова Валентина Алексеевна. . Полное название образовательного учреждения: МБОУ «Кватчинская ...
Степень числа и его свойства

Степень числа и его свойства

Тема урока: «Степень числа и его свойства». Тип урока: повторение изученного материала. Цели урока: а) обучающая: - повторить определение степени ...
Свойства степеней с рациональным показателем

Свойства степеней с рациональным показателем

Урок 43-44. Тема: «Свойства степеней с рациональным показателем». Цели урока:. обобщить и систематизировать знания обучающихся по теме “Степень”;. ...
Степень с рациональным показателем

Степень с рациональным показателем

. Конспект урока для 10 класса на тему:. «Степень с рациональным показателем». Цели урока:. . 1. . Образовательная. . - актуализировать ...
Степень, определение степени с натуральным показателем

Степень, определение степени с натуральным показателем

Муниципальное общеобразовательное учреждение. «Шишинская средняя общеобразовательная школа». Топкинского района Кемеровской области. ...
Общее понятие функции, способы её задания, свойства функции

Общее понятие функции, способы её задания, свойства функции

Методическая разработка урока математики по теме. «Общее понятие функции, способы её задания, свойства функции». Пояснительная записка. Преподаватель: ...
Степень натурального числа с натуральным показателем

Степень натурального числа с натуральным показателем

Урок по математике в 5 классе. учитель. Белялова А.Р. Тема урока:. «Степень натурального числа с натуральным показателем». Цели. :. ●Образовательные:. ...
Степень с рациональным показателем

Степень с рациональным показателем

Урок-КВН в 9 классе по теме:. «Степень с рациональным показателем». Разработала:. Учитель математики. МБОУ гимназии №88. Якунина Любовь ...
Показательная функция, её свойства и график

Показательная функция, её свойства и график

Государственное областное бюджетное. профессиональное образовательное учреждение. «ЛИПЕЦКИЙ ПОЛИТЕХНИЧЕСКИЙ ТЕХНИКУМ». Методическая разработка. ...
Степень с натуральным и нулевым показателем

Степень с натуральным и нулевым показателем

Иртышский район. СЕВЕРНАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА. ИНТЕРАКТИВНЫЙ УРОК. ТЕМА:. СТЕПЕНЬ С НАТУРАЛЬНЫМ И НУЛЕВЫМ ПОКАЗАТЕЛЕМ. ...
Степень с рациональным показателем

Степень с рациональным показателем

Конспект урока на тему « Степень с рациональным показателем». . Цель урока: Проверить уровень усвоения учениками основных понятий темы, свойства ...
Функция y=kx2, её свойства и график

Функция y=kx2, её свойства и график

Муниципальное общеобразовательное бюджетное учреждение «Промышленновская основная общеобразовательная школа №3». Функция y. =kx. 2. , её ...
Степень и ее свойства

Степень и ее свойства

Урок по теме: «Степень и ее свойства». Цель урока:. Обобщить знания учащихся по теме: «Степень с натуральным показателем». . Добиваться от ...
Умножение и деление степеней с натуральным показателем, возведение степени в степень

Умножение и деление степеней с натуральным показателем, возведение степени в степень

Урок математики – 7 класс. Тема:. Умножение и деление степеней с натуральным показателем, возведение степени в степень. Тип урока:. урок-закрепление. ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:12 сентября 2018
Категория:Математика
Классы:
Поделись с друзьями:
Скачать конспект