- Теорема Менелая и теорема Чевы

Презентация "Теорема Менелая и теорема Чевы" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Теорема Менелая и теорема Чевы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Теорема Менелая и теорема Чевы в школьном курсе математики. «Все незначительное нужно, Чтобы значительному быть…» И. Северянин. Работа учителя математики Колиной Н.К., МБОУ сош№17,г.Заволжье Нижегородской области
Слайд 1

Теорема Менелая и теорема Чевы в школьном курсе математики

«Все незначительное нужно, Чтобы значительному быть…» И. Северянин

Работа учителя математики Колиной Н.К., МБОУ сош№17,г.Заволжье Нижегородской области

Содержание. Теоретические основы Теорема Чевы Теорема Менелая Методические рекомендации Методика обучения решению задач в период предпрофильной подготовки Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Применение теорем Менелая и Чевы в решении стереометрических задач
Слайд 2

Содержание

Теоретические основы Теорема Чевы Теорема Менелая Методические рекомендации Методика обучения решению задач в период предпрофильной подготовки Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Применение теорем Менелая и Чевы в решении стереометрических задач

Теорема Чевы. Пусть в ∆ABC на сторонах BC,AC,AB или их продолжениях взяты соответственно точки A1, B1 и C1,не совпадающие с вершинами треугольника. Прямые A A1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство
Слайд 3

Теорема Чевы

Пусть в ∆ABC на сторонах BC,AC,AB или их продолжениях взяты соответственно точки A1, B1 и C1,не совпадающие с вершинами треугольника. Прямые A A1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство

Теорема Менелая. Пусть на сторонах AB, BC и на продолжении стороны AC (либо на продолжениях сторон AB,BC и AC) ∆ABC взяты соответственно точки C1,A1 и B1, не совпадающие с вершинами ∆ABC . Точки A1, B1, C1 лежат на одной прямой тогда и только тогда, когда выполняется равенство
Слайд 4

Теорема Менелая

Пусть на сторонах AB, BC и на продолжении стороны AC (либо на продолжениях сторон AB,BC и AC) ∆ABC взяты соответственно точки C1,A1 и B1, не совпадающие с вершинами ∆ABC . Точки A1, B1, C1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Методика обучения решению задач в период предпрофильной подготовки. 1. Теорема Менелая и пропорциональные отрезки в треугольнике. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 4. Реш
Слайд 5

Методика обучения решению задач в период предпрофильной подготовки

1. Теорема Менелая и пропорциональные отрезки в треугольнике. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 4. Решение задач, связанных с нахождением площадей. 5. Комбинированные задачи.

Теорема Менелая и пропорциональные отрезки в треугольнике. Задача 1.В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? Задача 2.В ∆ABC на стороне AC взята точка M, а на стороне BC – точка K так,
Слайд 6

Теорема Менелая и пропорциональные отрезки в треугольнике

Задача 1.В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? Задача 2.В ∆ABC на стороне AC взята точка M, а на стороне BC – точка K так, что AM: MC= 2:3, BK: KC= 4:3. В каком отношении AK делит отрезок BM? Задача 3. В ∆ABC AA1 - биссектриса, BB1- медиана; AB=2, AC=3; Найти BO: OB1

Теорема Чевы и ее следствия. Следствие1. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Следствие 2. Биссектрисы треугольника пересекаются в одной точке. Следствие3. Высоты треугольника (или их продолжения) пересекаются в одной точке
Слайд 7

Теорема Чевы и ее следствия.

Следствие1. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Следствие 2. Биссектрисы треугольника пересекаются в одной точке. Следствие3. Высоты треугольника (или их продолжения) пересекаются в одной точке.

Следствие4. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Следствие 5. Прямые, соединяющие вершины треугольника с точками, в которых вписанная окружность касается противоположных сторон, пересекаются в одной точке.
Слайд 8

Следствие4. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Следствие 5. Прямые, соединяющие вершины треугольника с точками, в которых вписанная окружность касается противоположных сторон, пересекаются в одной точке.

Применение теорем Чевы и Менелая к задачам на доказательство. Задача 1. Используя теорему Чевы, доказать, что в произвольном треугольнике прямые, проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке. Задача 2. На стороне AC треугольника ABC взяты точки P и E ,
Слайд 9

Применение теорем Чевы и Менелая к задачам на доказательство

Задача 1. Используя теорему Чевы, доказать, что в произвольном треугольнике прямые, проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке. Задача 2. На стороне AC треугольника ABC взяты точки P и E , на стороне BC – точки M и K, причем AP: PE: EC= CK: KM: MB. Отрезки AM и BP пересекаются в точке O, отрезки AK и BE – в точке T. Докажите, что точки O, T и С лежат на одной прямой.

Задачи на пропорциональное деление отрезков в треугольнике. Задача 1. В треугольнике ABC, описанном около окружности, AB = 8, BC = 5, AC = 4. Точки A1,В1 и C1 - точки касания, принадлежащие соответственно сторонам BC,AC и BA. Точка P - точка пересечения отрезков AA1 и CC1. Найдите AP:PA1. Задача 2.
Слайд 10

Задачи на пропорциональное деление отрезков в треугольнике.

Задача 1. В треугольнике ABC, описанном около окружности, AB = 8, BC = 5, AC = 4. Точки A1,В1 и C1 - точки касания, принадлежащие соответственно сторонам BC,AC и BA. Точка P - точка пересечения отрезков AA1 и CC1. Найдите AP:PA1. Задача 2. Стороны треугольника 5, 6 и 7. Найдите отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник.

Задача 3. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK = 2:3, а на стороне AC – точка L, делящая AC в отношении AL: LC = 5:3. Точка Q пересечения прямых CK и BL удалена от прямой AB на расстояние 1,5. Найдите длину стороны AB. Задач
Слайд 11

Задача 3. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK = 2:3, а на стороне AC – точка L, делящая AC в отношении AL: LC = 5:3. Точка Q пересечения прямых CK и BL удалена от прямой AB на расстояние 1,5. Найдите длину стороны AB. Задача 4. На стороне AC в треугольнике ABC взята точка K. AK=1, KC = 3. На стороне AB взята точка L. AL:LB=2:3. Q – точка пересечения прямых BK и CL. S = 1. Найдите длину высоты треугольника ABC, опущенной из вершины B.

Задачи, связанные с нахождением площадей. Задача 1. Медиана BD и биссектриса AE треугольника ABC пересекаются в точке F. Найти площадь треугольника ABC , если AF=3FE, BD=4, AE=6. Задача 2. На сторонах AB и BC треугольника ABC взяты точки M и N соответственно. Отрезки AN и CM пересекаются в точке L.
Слайд 12

Задачи, связанные с нахождением площадей

Задача 1. Медиана BD и биссектриса AE треугольника ABC пересекаются в точке F. Найти площадь треугольника ABC , если AF=3FE, BD=4, AE=6. Задача 2. На сторонах AB и BC треугольника ABC взяты точки M и N соответственно. Отрезки AN и CM пересекаются в точке L. Площади треугольников AML , CNL и ALC равны соответственно 15, 48 и 40. Найти площадь треугольника ABC.

Комбинированные задачи. Задача 1. На стороне NP квадрата MNPQ взята точка A, а на стороне PQ – точка B так, что NA:AP = PB:BQ = 2:3. Точка L является точкой пересечения отрезков MA и NB. В каком отношении точка L делит отрезок MA? Задача 2. В трапеции ABCD с основаниями AD и BC через точку A проведе
Слайд 13

Комбинированные задачи.

Задача 1. На стороне NP квадрата MNPQ взята точка A, а на стороне PQ – точка B так, что NA:AP = PB:BQ = 2:3. Точка L является точкой пересечения отрезков MA и NB. В каком отношении точка L делит отрезок MA? Задача 2. В трапеции ABCD с основаниями AD и BC через точку A проведена прямая, которая пересекает диагональ BD в точке E и боковую сторону CD в точке K, причем BE:ED=1:2, CK:KD=1:4. Найдите отношение длин оснований трапеции.

Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса. Урок 1. Теорема Менелая и теорема Чевы. Задача. В треугольнике ABC на стороне AC взята точка N так, что AN:NC=m:n, на стороне BC- точка K. BN пересекает AK в точке Q, BQ : QN= p:q. Найти отношение площадей треугольников AKC
Слайд 14

Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса

Урок 1. Теорема Менелая и теорема Чевы.

Задача. В треугольнике ABC на стороне AC взята точка N так, что AN:NC=m:n, на стороне BC- точка K. BN пересекает AK в точке Q, BQ : QN= p:q. Найти отношение площадей треугольников AKC и ABK.

( т.к. высоты равны)

I способ. Дополнительное построение: ND //

BC.

II способ. Рассмотрим треугольник BCN и секущую AK. По теореме Менелая
Слайд 15

II способ. Рассмотрим треугольник BCN и секущую AK. По теореме Менелая

Урок 2. Применение теорем Менелая и Чевы в решении ключевых задач. Цели урока: 1) формировать умения: -видеть конфигурации, удовлетворяющие заданным условиям; -решать задачи нестандартными способами; -использовать теоремы в задачах на доказательство; 2) развивать самостоятельность.
Слайд 16

Урок 2. Применение теорем Менелая и Чевы в решении ключевых задач

Цели урока: 1) формировать умения: -видеть конфигурации, удовлетворяющие заданным условиям; -решать задачи нестандартными способами; -использовать теоремы в задачах на доказательство; 2) развивать самостоятельность.

Задача. В равнобедренном треугольнике ABC (AС=BC) проведены медиана BN и высота АМ, которые пересекаются в точке D. AD=5, DM=2. Найти. Решение: AN=NC, AM=5+2=7. Рассмотрим ∆AMC и секущую NB. По теореме Менелая. Пусть коэффициент пропорциональности равен k, тогда СМ=3k, BM=2k. Из ∆ACM- прямоугольного
Слайд 17

Задача. В равнобедренном треугольнике ABC (AС=BC) проведены медиана BN и высота АМ, которые пересекаются в точке D. AD=5, DM=2. Найти

Решение: AN=NC, AM=5+2=7. Рассмотрим ∆AMC и секущую NB. По теореме Менелая

Пусть коэффициент пропорциональности равен k, тогда СМ=3k, BM=2k. Из ∆ACM- прямоугольного:

; Ответ:

Применение теорем Менелая и Чевы в решении стереометрических задач. Задача 1.На продолжении ребра АС правильной треугольной пирамиды ABCD с вершиной D взята точка K так, что КА:КС=3:4, а на ребре DC взята точка L так, что DL:LC=2:1. В каком отношении делит объем пирамиды плоскость, проходящая через
Слайд 18

Применение теорем Менелая и Чевы в решении стереометрических задач.

Задача 1.На продолжении ребра АС правильной треугольной пирамиды ABCD с вершиной D взята точка K так, что КА:КС=3:4, а на ребре DC взята точка L так, что DL:LC=2:1. В каком отношении делит объем пирамиды плоскость, проходящая через точки B, L и К? Задача 2. Дана правильная четырехугольная пирамида SABCD с вершиной S. На продолжении ребра CD взята точка M так, что DM=2CD . Через точки М, В и середину ребра SC проведена плоскость. В каком отношении она делит объем пирамиды?

Задача 3. Дана правильная треугольная призма с боковыми ребрами AA1,BB1 и CC1. Причем на продолжении ребра BA взята точка M так, что MA=AB. Через точки M,B1 и середину ребра AC проведена плоскость. В каком отношении она делит объем призмы?
Слайд 19

Задача 3. Дана правильная треугольная призма с боковыми ребрами AA1,BB1 и CC1. Причем на продолжении ребра BA взята точка M так, что MA=AB. Через точки M,B1 и середину ребра AC проведена плоскость. В каком отношении она делит объем призмы?

«Умение решать задачи- такое же практическое искусство, как умение плавать или бегать. Ему можно научиться только путем подражания или упражнения» Д.Пойа
Слайд 20

«Умение решать задачи- такое же практическое искусство, как умение плавать или бегать. Ему можно научиться только путем подражания или упражнения» Д.Пойа

Список похожих презентаций

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:учитель математики Колина Н.К.
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации