- ЦЕЛОЕ УРАВНЕНИЕ И ЕГО КОРНИ

Презентация "ЦЕЛОЕ УРАВНЕНИЕ И ЕГО КОРНИ" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "ЦЕЛОЕ УРАВНЕНИЕ И ЕГО КОРНИ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Алгебра 9 класс. Учитель: Романова Т.А. 20 октября 2008 год. МОУ Надеждинская средняя общеобразовательная школа Кошкинского района Самарской области
Слайд 1

Алгебра 9 класс

Учитель: Романова Т.А.

20 октября 2008 год

МОУ Надеждинская средняя общеобразовательная школа Кошкинского района Самарской области

Решить устно уравнения. а) x2 = 0 ж) x3 – 25x = 0 б) 3x – 5 = 0 з) x(x – 1)(x + 2) = 0 в) x2 – 5 = 0 и) x4 – x2 = 0 г) x2 = 1/36 к) x2 – 0,01 = 0,03 д) x2 = – 25 л) 19 – c2 = 10 е) = 0 м) (x – 3)2 = 25 1) х – 3 = 5 и 2) х – 3 = – 5. Какие из этих уравнений не являются целыми?
Слайд 2

Решить устно уравнения

а) x2 = 0 ж) x3 – 25x = 0 б) 3x – 5 = 0 з) x(x – 1)(x + 2) = 0 в) x2 – 5 = 0 и) x4 – x2 = 0 г) x2 = 1/36 к) x2 – 0,01 = 0,03 д) x2 = – 25 л) 19 – c2 = 10 е) = 0 м) (x – 3)2 = 25 1) х – 3 = 5 и 2) х – 3 = – 5

Какие из этих уравнений не являются целыми?

Целое уравнение и его корни. Тема урока
Слайд 3

Целое уравнение и его корни

Тема урока

Основная цель урока: Обобщить и систематизировать знания о целых уравнениях и методах их решений.
Слайд 4

Основная цель урока:

Обобщить и систематизировать знания о целых уравнениях и методах их решений.

Целые уравнения. Уравнения, в которых левая и правая часть являются целыми выражениями называются целыми уравнениями. Степенью целого уравнения называют степень равносильного ему уравнения вида Р(х) = 0, где Р(х) – многочлен стандартного вида Какова степень знакомых нам уравнений?
Слайд 5

Целые уравнения

Уравнения, в которых левая и правая часть являются целыми выражениями называются целыми уравнениями. Степенью целого уравнения называют степень равносильного ему уравнения вида Р(х) = 0, где Р(х) – многочлен стандартного вида Какова степень знакомых нам уравнений?

Какова степень знакомых нам уравнений? а) x2 = 0 ж) x3 – 25x = 0 б) 3x – 5 = 0 з) x(x – 1)(x + 2) = 0 в) x2 – 5 = 0 и) x4 – x2 = 0 г) x2 = 1/36 к) x2 – 0,01 = 0,03 д) x2 = – 25 л) 19 – c2 = 10
Слайд 6

Какова степень знакомых нам уравнений?

а) x2 = 0 ж) x3 – 25x = 0 б) 3x – 5 = 0 з) x(x – 1)(x + 2) = 0 в) x2 – 5 = 0 и) x4 – x2 = 0 г) x2 = 1/36 к) x2 – 0,01 = 0,03 д) x2 = – 25 л) 19 – c2 = 10

В учебнике найдите № 205. Посмотрите на уравнения а), б) и в). Чем они отличаются? Уравнения будем решать аналитическим способом. С чего начнём?
Слайд 7

В учебнике найдите № 205. Посмотрите на уравнения а), б) и в). Чем они отличаются? Уравнения будем решать аналитическим способом. С чего начнём?

Решите уравнения: 2∙х + 5 =15 0∙х = 7 Сколько корней может иметь уравнение I степени? Не более одного!
Слайд 8

Решите уравнения: 2∙х + 5 =15 0∙х = 7 Сколько корней может иметь уравнение I степени? Не более одного!

Решите уравнения: I вариант II вариант III вариант x2-5x+6=0 y2-4y+7=0 x2-12x+36=0 D=1, D>0, D=-12, D
Слайд 9

Решите уравнения: I вариант II вариант III вариант x2-5x+6=0 y2-4y+7=0 x2-12x+36=0 D=1, D>0, D=-12, D

Решите уравнения: I вариант II вариант III вариант x3-1=0 x3- 4x=0 x3-12x2+36x=0 x3=1 x(x2- 4)=0 x(x2-12x+36)=0 x=1 x=0, x=2, x= -2 x=0, x=6 1 корень 3 корня 2 корня Сколько корней может иметь уравнение I I I степени? Не более трех!
Слайд 10

Решите уравнения: I вариант II вариант III вариант x3-1=0 x3- 4x=0 x3-12x2+36x=0 x3=1 x(x2- 4)=0 x(x2-12x+36)=0 x=1 x=0, x=2, x= -2 x=0, x=6 1 корень 3 корня 2 корня Сколько корней может иметь уравнение I I I степени? Не более трех!

Как вы думаете сколько корней может иметь уравнение IV, V , VI, VII, n-й степени? Не более четырёх, пяти, шести, семи корней! Вообще не более n корней !
Слайд 11

Как вы думаете сколько корней может иметь уравнение IV, V , VI, VII, n-й степени? Не более четырёх, пяти, шести, семи корней! Вообще не более n корней !

Мы с вами сегодня решали уравнения аналитическим способом, но существует не только этот способ. Прежде чем с ним познакомится вспомним известные нам функции и их графики!
Слайд 12

Мы с вами сегодня решали уравнения аналитическим способом, но существует не только этот способ. Прежде чем с ним познакомится вспомним известные нам функции и их графики!

Из списка функций приведенного на доске выберите функцию, соответствующую данному графику. Запишите в тетради данные соответствия
Слайд 13

Из списка функций приведенного на доске выберите функцию, соответствующую данному графику. Запишите в тетради данные соответствия

1
Слайд 14

1

2
Слайд 15

2

3
Слайд 16

3

4
Слайд 17

4

5
Слайд 18

5

6
Слайд 19

6

7
Слайд 20

7

8
Слайд 21

8

Проверьте правильность выполнения задания своего соседа по парте. Е А З Д Ж Б И В
Слайд 22

Проверьте правильность выполнения задания своего соседа по парте

Е А З Д Ж Б И В

А сейчас рассмотрим еще один (графический) способ решение уравнения I I I степени? Уравнение x3 + x – 4 = 0. А сколько корней оно может иметь? Запишем это уравнение в виде x3 = –x + 4. Рассмотрим функции y=x3 и y = –x+4. Что является графиками данных функций? Кубическая парабола и прямая. См. рисуно
Слайд 23

А сейчас рассмотрим еще один (графический) способ решение уравнения I I I степени? Уравнение x3 + x – 4 = 0. А сколько корней оно может иметь? Запишем это уравнение в виде x3 = –x + 4. Рассмотрим функции y=x3 и y = –x+4. Что является графиками данных функций? Кубическая парабола и прямая. См. рисунок № 43 учебника (Алгебра 9 класс),

Найдите абсциссу точки пересечения графиков y=x3 и y = –x+4. 1,3 < х < 1,4
Слайд 24

Найдите абсциссу точки пересечения графиков y=x3 и y = –x+4.

1,3 < х < 1,4

Попробуйте назвать корень данного уравнения! Как вы думаете, в чём недостаток данного метода решения? Да, графический способ решения уравнений не всегда обеспечивает высокую точность результата, и поэтому иногда приходится этот результат уточнять при помощи вычислений. Итак, ребята, данное уравнение
Слайд 25

Попробуйте назвать корень данного уравнения! Как вы думаете, в чём недостаток данного метода решения? Да, графический способ решения уравнений не всегда обеспечивает высокую точность результата, и поэтому иногда приходится этот результат уточнять при помощи вычислений. Итак, ребята, данное уравнение имеет 1 решение х ≈ 1,37

А если бы подобное уравнение имело бы 2 решения, то, как бы могла прямая располагаться по отношению к кубической параболе?
Слайд 26

А если бы подобное уравнение имело бы 2 решения, то, как бы могла прямая располагаться по отношению к кубической параболе?

А если три решения?
Слайд 27

А если три решения?

Рассмотрите пример решения уравнения графическим способом Чтобы решить уравнение х2 + 2х – 8 =0 представим его в виде х2 = – 2х +8, Далее рассмотрим функции у = х2 и у = – 2х +8. Что является графиком каждой функции? Построим графики этих функций в одной системе координат. Определим абсциссы точек п
Слайд 28

Рассмотрите пример решения уравнения графическим способом Чтобы решить уравнение х2 + 2х – 8 =0 представим его в виде х2 = – 2х +8, Далее рассмотрим функции у = х2 и у = – 2х +8. Что является графиком каждой функции? Построим графики этих функций в одной системе координат. Определим абсциссы точек пересечения, они будут являться корнями нашего уравнения

Определим абсциссы точек пересечения, они будут являться корнями нашего уравнения. Ответ: – 4 ; 2
Слайд 29

Определим абсциссы точек пересечения, они будут являться корнями нашего уравнения

Ответ: – 4 ; 2

А теперь попробуем все теоретические знания применить на практике. Я предлагаю вам решить уравнения а) х2 + х – 6 =0; б) х3 + х – 2 =0; в) х3 – 2х – 4 =0; Ребята, давайте повторим алгоритм решения уравнений графическим способом. Ответ: -3; 2 Ответ: 1 Ответ: 2
Слайд 30

А теперь попробуем все теоретические знания применить на практике. Я предлагаю вам решить уравнения а) х2 + х – 6 =0; б) х3 + х – 2 =0; в) х3 – 2х – 4 =0; Ребята, давайте повторим алгоритм решения уравнений графическим способом

Ответ: -3; 2 Ответ: 1 Ответ: 2

Подводя итоги урока, вспомним, какие уравнения называются целыми и сколько они могут иметь решений? Домашнее задание. П.10 № 204 (в, г) № 217 (а,б,в,) № 290
Слайд 31

Подводя итоги урока, вспомним, какие уравнения называются целыми и сколько они могут иметь решений? Домашнее задание. П.10 № 204 (в, г) № 217 (а,б,в,) № 290

Конспекты

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА

1001 идея интересного занятия с детьми. . РАЗРАБОТКА УРОКА ПО ТЕМЕ «АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ И ЕГО СВОЙСТВА». Евграшина Наталья ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

Муниципальное бюджетное общеобразовательное учреждение. Наро-Фоминская средняя общеобразовательная школа №5. с углубленным изучением отдельных ...
АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ

МОУ –лицей № 90. начальная школа. «АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ЧИСЛАМИ. . . УРОК ПОВТОРЕНИЯ И ЗАКРЕПЛЕНИЯ». (конспект урока ...
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ

УРОК В 9 КЛАССЕ ПО ТЕМЕ. «АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ» (2ч). Цели урока:. . 1). образовательная. : рассмотрение задач на применение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:6 января 2013
Категория:Математика
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации