Презентация "Звуки вокруг нас" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Звуки вокруг нас" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Презентацию подготовила ученица 11 класса СОШ 26 Малинина Татьяна. Физика вокруг нас Физика и музыка 5klass.net
Слайд 1

Презентацию подготовила ученица 11 класса СОШ 26 Малинина Татьяна

Физика вокруг нас Физика и музыка 5klass.net

Музыкальные звуки сопровождают нас на протяжении всей нашей жизни. Силу музыки, способной воплотить воедино мечты, стремления, и помыслы человека, испытал на себе каждый из нас. Окружающих нас звуков много, но интересуют нас не все, а именно музыкальные звуки. Почему? Чем отличаются остальные звуки?
Слайд 2

Музыкальные звуки сопровождают нас на протяжении всей нашей жизни. Силу музыки, способной воплотить воедино мечты, стремления, и помыслы человека, испытал на себе каждый из нас.

Окружающих нас звуков много, но интересуют нас не все, а именно музыкальные звуки. Почему? Чем отличаются остальные звуки? Что представляет собой звук? Как его можно получить? На эти вопросы отвечает физика

Мы охотно слушаем музыку, пение птиц, приятный человеческий голос. Напротив, тарахтение телеги, визг пилы, мощные удары молота нам неприятны и нередко раздражают и утомляют. Таким образом, по действию, производимому на нас, все звуки делятся на две группы: музыкальные звуки и шумы. Чем они отличаютс
Слайд 3

Мы охотно слушаем музыку, пение птиц, приятный человеческий голос. Напротив, тарахтение телеги, визг пилы, мощные удары молота нам неприятны и нередко раздражают и утомляют. Таким образом, по действию, производимому на нас, все звуки делятся на две группы: музыкальные звуки и шумы. Чем они отличаются друг от друга?

Установить различие между музыкой и шумом довольно трудно, так как то, что может казаться музыкой для одного, может быть просто шумом для другого. Некоторые считают оперу совершенно немузыкально, а другие, наоборот, видят в ней предел совершенства в музыке. Ржание лошади или скрип нагруженного лесом
Слайд 4

Установить различие между музыкой и шумом довольно трудно, так как то, что может казаться музыкой для одного, может быть просто шумом для другого. Некоторые считают оперу совершенно немузыкально, а другие, наоборот, видят в ней предел совершенства в музыке. Ржание лошади или скрип нагруженного лесом вагона может быть шумом для большинства людей, но для лесопромышленника это- музыка. Любящим родителям крик младенца кажется музыкой, для других эти звуки просто шум.

Однако большинство людей согласится с тем, что звуки, идущие от колеблющихся струн, язычков, камертона и вибрирующих голосовых связок певца, музыкальные. Но если это так, то что же существенно в возбуждении музыкального звука или тона?. Для музыкального звука существенно, чтобы колебания происходили
Слайд 5

Однако большинство людей согласится с тем, что звуки, идущие от колеблющихся струн, язычков, камертона и вибрирующих голосовых связок певца, музыкальные. Но если это так, то что же существенно в возбуждении музыкального звука или тона?. Для музыкального звука существенно, чтобы колебания происходили через равные промежутки времени. Колебания струн, камертонов и т.д. имеют такой характер; а колебания поездов, вагонов с лесом и т.д. происходят через неправильные, неравномерные промежутки времени, и производимые ими звуки представляют только шум.

Музыкальные звуки издают различные музыкальные инструменты. Источники звука в них разные, поэтому музыкальные инструменты делятся на ряд групп: ударные – бубны, барабаны, ксилофоны и т.д. ( здесь колеблются от удара палочки или руки натянутый материал, металлические пластины и т.д.)
Слайд 6

Музыкальные звуки издают различные музыкальные инструменты. Источники звука в них разные, поэтому музыкальные инструменты делятся на ряд групп: ударные – бубны, барабаны, ксилофоны и т.д. ( здесь колеблются от удара палочки или руки натянутый материал, металлические пластины и т.д.)

клавишные - пианино, клавесины (колебания струн вызываются ударами молоточков); духовые – флейты, горны, фанфары, валторны, трубы (колебания столба воздуха внутри инструмента); струнные – скрипка, гитара.
Слайд 7

клавишные - пианино, клавесины (колебания струн вызываются ударами молоточков); духовые – флейты, горны, фанфары, валторны, трубы (колебания столба воздуха внутри инструмента); струнные – скрипка, гитара.

Такое деление часто условно. Например, орган – целая фабрика звуков. Еще в ХIХ веке на нем, как на настоящей фабрике трудились рабочие, вручную качали меха. Лишь в прошлом веке людей заменили электромоторы, а на смену мехам пришли вентиляторы. Орган по праву называется царем оркестра, а рояль призна
Слайд 8

Такое деление часто условно. Например, орган – целая фабрика звуков. Еще в ХIХ веке на нем, как на настоящей фабрике трудились рабочие, вручную качали меха. Лишь в прошлом веке людей заменили электромоторы, а на смену мехам пришли вентиляторы. Орган по праву называется царем оркестра, а рояль признается его королем. Но правильнее оркестр считать республикой, где каждый гражданин пользуется правом голоса и каждый представляет собой неповторимую индивидуальность.

Чем же отличаются друг от друга звуки разных инструментов? Для характеристики звука существуют три важных понятия: 1.Громкость звука. Она определяется действием звука на орган слуха, и поэтому ее трудно оценить объективно. В физике пользуются понятием, которое можно измерить – интенсивность звука, к
Слайд 9

Чем же отличаются друг от друга звуки разных инструментов? Для характеристики звука существуют три важных понятия: 1.Громкость звука. Она определяется действием звука на орган слуха, и поэтому ее трудно оценить объективно. В физике пользуются понятием, которое можно измерить – интенсивность звука, которая зависит от амплитуды колебаний и от площади тела, совершающего колебания. Хотя амплитуда колебаний источника звука может быть велика, амплитуда частиц передающей среды воздуха очень мала. Ухо чувствительно к амплитудам колебаний воздуха порядка одной миллиардной сантиметра и еще меньшим амплитудам колебаний частиц жидкостей и твердых тел. Колебания частиц воздуха с амплитудой в одну сотою сантиметра создают такой громкий звук, который способен нанести повреждение уху. Мерой громкости является lgE/E0, где Е0 – нулевой уровень энергии звука (звуков такой силы не услышит человек даже самым хорошим слухом), Е – уровень энергии интересующего нас звука.

Единица громкости – белл (в честь ученого Грэхема Белла, изобретателя телефона). На практике чаще громкость измеряют в децибеллах. Вот примеры громкости различных звуков на расстоянии в несколько метров от источника звука: шелест листьев-10дБ, громкий разговор 70 дБ, пылесос – 50дБ. От звучащего муз
Слайд 10

Единица громкости – белл (в честь ученого Грэхема Белла, изобретателя телефона). На практике чаще громкость измеряют в децибеллах. Вот примеры громкости различных звуков на расстоянии в несколько метров от источника звука: шелест листьев-10дБ, громкий разговор 70 дБ, пылесос – 50дБ. От звучащего музыкального инструмента волна распространяется во все стороны, и на расстоянии от него громкость звука естественно уменьшается. Для усиления звука служат корпусы инструментов. Эти корпусы играют роль резонаторных ящиков.

Наинизший из слышимых человеком музыкальных звуков имеет частоту 16 колебаний в секунду. Он извлекается органом. Но применяется нечасто- слишком уж басовит. Разобрать и понять его трудно. Зато 27 колебаний в секунду – тон, вполне ясный для уха, хотя тоже редкий. Его можно услышать, нажав крайнюю лев
Слайд 11

Наинизший из слышимых человеком музыкальных звуков имеет частоту 16 колебаний в секунду. Он извлекается органом. Но применяется нечасто- слишком уж басовит. Разобрать и понять его трудно. Зато 27 колебаний в секунду – тон, вполне ясный для уха, хотя тоже редкий. Его можно услышать, нажав крайнюю левую клавишу рояля. Следующий любопытный тон - 44 колебания в секунду, абсолютно «нижний» рекорд мужского баса, поставленный в восемнадцатом веке певцом Каспаром Феспером. (В наши дни такой звук берет англичанин Норманн Аллин.)

80 колебаний в секунду – обыкновенная нижняя нота хорошего баса и многих инструментов. Повысив звук на октаву, то есть, удвоив число колебаний, переходим к тону, доступному виолончелям, альтам, баритонам, женским контральто, тенорам. Еще октавой выше- участок диапазона, буквально «кишащий» музыкой.
Слайд 12

80 колебаний в секунду – обыкновенная нижняя нота хорошего баса и многих инструментов. Повысив звук на октаву, то есть, удвоив число колебаний, переходим к тону, доступному виолончелям, альтам, баритонам, женским контральто, тенорам. Еще октавой выше- участок диапазона, буквально «кишащий» музыкой. Тут работают практически все голоса и музыкальные инструменты. Недаром именно в этом районе акустика закрепила всеобщий эталон высоты – 440 колебаний в секунду («ля» первой октавы). Вплоть до 1000-1200 колебаний в секунду диапазон полон музыкой. Эти звуки самые слышные. Выше следуют менее населенные этажи. Легко взбираются на них лишь скрипки, флейты да такие универсалы, как рояль, орган, арфа. И полновластными хозяйками здесь выступают звонкие сопрано. Вершины женского голоса поднялись выше. В XVIII веке Моцарт восхищался певицей Лукрецией Аджуяри, которая брала «до» четвертой октавы – 2018 колебаний в секунду. Француженка Мадо Робен пела полным голосом «ре» четвертой октавы – 2300 колебаний в секунду. Звуки с частотой выше 3000 колебаний в секунду в качестве самостоятельных музыкальных тонов не используются. Они слишком резки и пронзительны.

А с 16 000 – 20 000 колебаний в секунду начинается недоступный человеческому уху ультразвук. Профессий у него масса. Он сверлит камень, счищает ржавчину, измельчает материалы, измеряет глубину морей. Звуки высотой меньше 16 Гц – инфразвук. Лет тридцать назад в одном из лондонских театров готовилась
Слайд 13

А с 16 000 – 20 000 колебаний в секунду начинается недоступный человеческому уху ультразвук. Профессий у него масса. Он сверлит камень, счищает ржавчину, измельчает материалы, измеряет глубину морей. Звуки высотой меньше 16 Гц – инфразвук. Лет тридцать назад в одном из лондонских театров готовилась к постановке пьеса, действие которой по ходу спектакля переносилось в далекое прошлое. Режиссер хотел подчеркнуть необычайную постановку оригинальным сценическим эффектом. Но каким? К переменам освещения все привыкли, музыка заглушила бы слова автора. И вот физик Роберт Вуд посоветовал использовать инфразвук – сверхнизкий звук, не слышимый человеком, но при достаточной силе, как уверял Вуд, создающий ощущение таинственности. Ученый собственноручно изготовил источник инфразвука - органную трубу. И на очередной репетиции ее опробовали. «Последовал неожиданный эффект, - вспоминает журналист-очевидец, - вроде того, который предшествует землетрясению: задребезжали окна, зазвенели стеклянные люстры, все старинное здание начало дрожать. Ужас прокатился по залу. Пришли в смятение даже жители соседних домов». Естественно режиссер отказался от этой идеи и распорядился выкинуть трубу

Случай в лондонском театре – единственная попытка использовать инфразвуки в искусстве. Науке они служат исправно. Есть приборы, которые чутко улавливают инфразвуки. С помощью таких аппаратов геофизики предсказывают штормы на море, изучают подземные толчки. Не все комбинации звуков доставляют удоволь
Слайд 14

Случай в лондонском театре – единственная попытка использовать инфразвуки в искусстве. Науке они служат исправно. Есть приборы, которые чутко улавливают инфразвуки. С помощью таких аппаратов геофизики предсказывают штормы на море, изучают подземные толчки. Не все комбинации звуков доставляют удовольствие слушателю. Оказывается, приятные ощущения создают такие звуки, частоты колебаний которых находятся в простых соотношениях. Если звуковые частоты находятся в отношении 2:1, то говорят об октаве, если 5:4 – о большой терции, отношение 4:3 дает кварту, а 3:2 – квинту. Ощущение благозвучности теряется, если частоты звуковых колебаний нельзя представить такими простыми соотношениями. Тогда музыканты говорят о диссонансе. Ухо хорошо ощущает сочетания различных тонов. Поэтому люди даже с посредственным слухом чувствительны к диссонансам. Знаменитому немецкому естествоиспытателю Герману Гельмгольцу мы обязаны объяснением этих явлений. Именно он впервые изучил резонаторы, разложил музыкальный звук в спектр, раскрыл секрет тембра, создал теории человеческого голоса и слуха, математически объяснил закономерности музыкальной гармонии.

По словам шведского физика, лауреата Нобелевской премии, профессора Ханнеса Альвена, красота формул отличается от красоты музыки не больше, чем красота музыки от красоты картин. Наверное, поэтому в поисках гармонии ученые чаще всего обращаются к музыке. Движение планет Солнечной системы подчиняется
Слайд 15

По словам шведского физика, лауреата Нобелевской премии, профессора Ханнеса Альвена, красота формул отличается от красоты музыки не больше, чем красота музыки от красоты картин. Наверное, поэтому в поисках гармонии ученые чаще всего обращаются к музыке. Движение планет Солнечной системы подчиняется законам Кеплера. Пытаясь постичь гармонию истинного движения планет, Кеплер ставил перед собой задачу вывести строгие численные соотношения, отвечающие этой волшебной, неуловимой гармонии. Как и многие ученые до него, например Пифагор, Кеплер обращается к музыке. Ведь именно здесь гармонические сочетания наиболее очевидны. Он пишет « Небесные движения есть не что иное, как ни на миг не прекращающаяся многоголосая музыка, воспринимаемая не слухом, а разумом».

Список похожих презентаций

Физика вокруг нас

Физика вокруг нас

Внеклассная работа в летний период учителя физики Грачевой С. И.[227-925-222] Тема работы: «Физика вокруг нас». Первый этап — «Физика в опытах», кружковая ...
Световые явления вокруг нас

Световые явления вокруг нас

Свет – самое тёмное пятно в физике. [1]. До 16 века многие философы считали, что свет это нечто исходящее из глаз и ощупывающее предметы. Согласно ...
Физика вокруг нас

Физика вокруг нас

Удивительный волчок! Ж.Б.Шарден. Мальчик с волчком. 18век. Волчок - это незамысловатая с виду игрушка, которой развлекались дети всех времен и народов. ...
Трение вокруг нас

Трение вокруг нас

. Виды трения. Трение покоя – это сила сопротивления, возникающая при действии силы тяги. Трение скольжения – возникает при скольжении тела Трение ...
Физика вокруг нас

Физика вокруг нас

Модернизация образования. Модернизация предполагает ориентацию образования не только на усвоение обучающимся определенной суммы знаний, но и на развитие ...
Радиация вокруг нас

Радиация вокруг нас

Задачи проекта:. Измерение природного радиационного фона в районе г.Кувшиново; Выяснить направление ветра в окрестностях г.Кувшиново, относительно ...
Графики вокруг нас

Графики вокруг нас

График (от греческого graphikos) – линия дающая наглядное представление о характере зависимости какой либо величины от другой (т.е.функции). что позволяют ...
Физика вокруг нас

Физика вокруг нас

Физика вокруг нас. Световые явления. Тепловые явления. Магнитные явления. Электрические явления. Механические явления. Звуковые явления. Агрегатные ...
Физика вокруг нас

Физика вокруг нас

В вате не спрячешь огня. Огонь – это горение. (горение – физико-химический процесс, при котором превращение вещества сопровождается интенсивным выделением ...
Физика внутри нас

Физика внутри нас

Что лежит в основе работы организма человека? Поверхность легких - порядка 100 квадратных метров. Лейкоциты в организме человека живут 2-4 дня, а ...
Звуки в физике, природе, музыке

Звуки в физике, природе, музыке

Цели урока: Развивающая: развитие творческих способностей детей, познавательного интереса к предмету Обучающая: обобщить, систематизировать и расширить ...
Звуки в воде

Звуки в воде

Почему мы плохо слышим звуки в воде? Это обусловлено тем, что акустический импеданс воды приблизительно в 1000 раз больше, чем у среднего уха, и поэтому ...
Звуки

Звуки

. . - бас – 80 – 350 Гц - баритон -110 – 149 Гц - тенор - 130 – 520 Гц - дискант - 260 - 1000 Гц - сопрано – 260 – 1050 Гц - колоратурное сопрано ...
Звуки

Звуки

Цель: познакомить учащихся со звуками , их источниками и видами, используя сообщение о колоколе и колокольном звоне. «Акустика -раздел физики, в котором ...
Електрика навколо нас

Електрика навколо нас

Дослід Бенджаміна Франкліна з повітряним змієм Дослід Георга Ріхмана. “Вогні Святого Ельма”. Електричний скат Електричний вугор Комар. Прояви статичної ...
Далеко ли от нас невесомость?

Далеко ли от нас невесомость?

Что такое невесомость? . . . Полезный совет. Если вам доведется побывать в невесомости, то помните, что отсутствие веса не значит отсутствие массы, ...
Познание законов физики с помощью предметов находящихся у нас под рукой

Познание законов физики с помощью предметов находящихся у нас под рукой

Опыт 1. «НАУЧНЫЙ» ДАРТС. Однажды на даче я потерял дротики от дартса. Я решил заменить дротики длинными иголками. Но острые иголки НЕ ВТЫКАЛИСЬ!!! ...
Воздух, который нас окружает. Опыты с воздухом

Воздух, который нас окружает. Опыты с воздухом

Цель:. исследовать воздух и провести опыты с воздухом в домашних условиях Задачи Изучить литературу по теме Провести ряд экспериментов и анкетирование ...
Вода внутри нас

Вода внутри нас

Добрянская Елена Николаевна – научный руководитель Ахмерова Дилара – ученица СОШ №12 10А класса. Авторы работы. Вода – источник всего во Вселенной. ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...

Конспекты

Электрическое поле вокруг нас

Электрическое поле вокруг нас

10 класс. Открытый урок по теме «Электрическое поле вокруг нас». Цель:. повторение и обобщение знаний по разделу “Электрическое поле” в игровой ...
Физика вокруг нас

Физика вокруг нас

Конкурсная программа интеллектуального марафона. . «Физика вокруг нас» разработана для учащихся 9-11 классов. Цель: - расширение знаний законов ...
Механические колебания и волны вокруг нас

Механические колебания и волны вокруг нас

Муниципальное бюджетное образовательное учреждение. . Средняя общеобразовательная школа села Суслово. . Конспект урока по физике в 9 классе«. ...
Физика вокруг нас

Физика вокруг нас

Урок физики 8 класс. Игнатова Евгения Савельевна. Учитель физики муниципального общеобразовательного учреждения средней общеобразовательной школы ...
Звуковые волны вокруг нас

Звуковые волны вокруг нас

Муниципальное бюджетное общеобразовательное учреждение. «Ходарская средняя общеобразовательная школа им. И.Н.Ульянова Шумерлинского района Чувашской ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 октября 2018
Категория:Физика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации