Презентация "Энтропия" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65
Слайд 66
Слайд 67
Слайд 68
Слайд 69
Слайд 70
Слайд 71
Слайд 72
Слайд 73
Слайд 74
Слайд 75
Слайд 76
Слайд 77
Слайд 78

Презентацию на тему "Энтропия" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 78 слайд(ов).

Слайды презентации

Сегодня вторник, 18 сентября 2018 г.
Слайд 1

Сегодня вторник, 18 сентября 2018 г.

МОЛЕКУЛЯРНАЯ ФИЗИКА ТЕРМОДИНАМИКА. Т П У. Доцент кафедры Общей физики Кузнецов Сергей Иванович
Слайд 2

МОЛЕКУЛЯРНАЯ ФИЗИКА ТЕРМОДИНАМИКА

Т П У

Доцент кафедры Общей физики Кузнецов Сергей Иванович

Тема 6. ЭНТРОПИЯ. ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ. 6.1. Приведенная теплота. Энтропия 6.2. Изменение энтропии 6.3. Поведение энтропии в процессах изменения агрегатного состояния 6.4. Изменение энтропии в обратимых и необратимых процессах 6.5. Второе начало термодинамики 6.6. Свободная и связанн
Слайд 3

Тема 6. ЭНТРОПИЯ. ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ

6.1. Приведенная теплота. Энтропия 6.2. Изменение энтропии 6.3. Поведение энтропии в процессах изменения агрегатного состояния 6.4. Изменение энтропии в обратимых и необратимых процессах 6.5. Второе начало термодинамики 6.6. Свободная и связанная энергии 6.7. Статистический смысл энтропии 6.8. Третье начало термодинамики

6.1. Приведенная теплота. Энтропия. Из рассмотренного цикла Карно (п. 5.4) видно, что равны между собой отношения теплот к температурам, при которых они были получены или отданы в изотермическом процессе:
Слайд 4

6.1. Приведенная теплота. Энтропия

Из рассмотренного цикла Карно (п. 5.4) видно, что равны между собой отношения теплот к температурам, при которых они были получены или отданы в изотермическом процессе:

Отношение теплоты Q в изотермическом процессе к температуре, при которой происходила передача теплоты, называется приведенной теплотой : (6.1.1) Для подсчета приведенной теплоты в произвольном процессе необходимо разбить этот процесс на бесконечно малые участки, где Т можно считать константой. Приве
Слайд 5

Отношение теплоты Q в изотермическом процессе к температуре, при которой происходила передача теплоты, называется приведенной теплотой : (6.1.1) Для подсчета приведенной теплоты в произвольном процессе необходимо разбить этот процесс на бесконечно малые участки, где Т можно считать константой. Приведенная теплота на таком участке будет равна

Суммируя приведенную теплоту на всех участках процесса, получим: Тогда в обратимом цикле Карно имеем:
Слайд 7

Суммируя приведенную теплоту на всех участках процесса, получим: Тогда в обратимом цикле Карно имеем:

Этот результат справедлив для любого обратимого процесса. Таким образом, для процесса, происходящего по замкнутому циклу (6.1.2) Из равенства нулю интеграла, взятого по замкнутому контуру, следует, что подынтегральное выражение - есть полный дифференциал некоторой функции, которая определяется тольк
Слайд 8

Этот результат справедлив для любого обратимого процесса. Таким образом, для процесса, происходящего по замкнутому циклу (6.1.2) Из равенства нулю интеграла, взятого по замкнутому контуру, следует, что подынтегральное выражение - есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние.

Это позволяет ввести новую функцию состояния S: (6.1.3) Функция состояния, полный дифференциал которой равен , называется энтропией. Энтропия S – это отношение получен-ной или отданной теплоты к температу-ре, при которой происходил этот процесс.
Слайд 9

Это позволяет ввести новую функцию состояния S: (6.1.3) Функция состояния, полный дифференциал которой равен , называется энтропией. Энтропия S – это отношение получен-ной или отданной теплоты к температу-ре, при которой происходил этот процесс.

Понятие энтропии было впервые введено Рудольфом Клаузиусом в 1865 г. Для обратимых процессов изменение энтропии: (6.1.4) - это выражение называется равенство Клаузиуса.
Слайд 10

Понятие энтропии было впервые введено Рудольфом Клаузиусом в 1865 г. Для обратимых процессов изменение энтропии: (6.1.4) - это выражение называется равенство Клаузиуса.

Клаузиус Рудольф Юлиус Эмануэль (1822 – 1888) – немецкий физик-теоретик, один из создателей термодинамики и кинетической теории газов. Его работы посвящены молекулярной физике, термодинамике, теории паровых машин, теоретической механике, математической физике. Развивая идеи Н. Карно, точно сформулир
Слайд 11

Клаузиус Рудольф Юлиус Эмануэль (1822 – 1888) – немецкий физик-теоретик, один из создателей термодинамики и кинетической теории газов. Его работы посвящены молекулярной физике, термодинамике, теории паровых машин, теоретической механике, математической физике. Развивая идеи Н. Карно, точно сформулировал принцип эквивалентности теплоты и работы.

В 1850 г. получил общие соотношения между теплотой и механической работой (первое начало термодинамики) и разработал идеальный термодинамический цикл паровой машины (цикл Ранкина-Клаузиуса). Ввел понятие энтропии.
Слайд 12

В 1850 г. получил общие соотношения между теплотой и механической работой (первое начало термодинамики) и разработал идеальный термодинамический цикл паровой машины (цикл Ранкина-Клаузиуса). Ввел понятие энтропии.

6.2. Изменение энтропии в изопроцессах. Энтропия системы является функцией ее состояния, определенная с точностью до произвольной постоянной. Если система совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии: (6.2.1)
Слайд 13

6.2. Изменение энтропии в изопроцессах

Энтропия системы является функцией ее состояния, определенная с точностью до произвольной постоянной. Если система совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии: (6.2.1)

Таким образом, по этой формуле можно определить энтропию лишь с точностью до аддитивной постоянной, т.е. начало энтропии	произвольно. Физический смысл имеет лишь разность	энтропий. Исходя из этого, найдем изменения энтропии в процессах идеального газа.
Слайд 14

Таким образом, по этой формуле можно определить энтропию лишь с точностью до аддитивной постоянной, т.е. начало энтропии произвольно. Физический смысл имеет лишь разность энтропий. Исходя из этого, найдем изменения энтропии в процессах идеального газа.

Так как, а то или (6.2.2)
Слайд 15

Так как, а то или (6.2.2)

т.е. изменение энтропии S12 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида перехода 1 2. Каждый из изопроцессов идеального газа характеризуется своим изменением энтропии, а именно: изохорический: ,т.к., V1= V2
Слайд 16

т.е. изменение энтропии S12 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида перехода 1 2. Каждый из изопроцессов идеального газа характеризуется своим изменением энтропии, а именно: изохорический: ,т.к., V1= V2

изобарический: т.к. Р1 = Р2, изотермический: т.к. адиабатический: адиабатический процесс называют изоэнтропийным процессом, т.к.
Слайд 17

изобарический: т.к. Р1 = Р2, изотермический: т.к. адиабатический: адиабатический процесс называют изоэнтропийным процессом, т.к.

Изменение энтропии в изопроцессах:
Слайд 18

Изменение энтропии в изопроцессах:

6.3. Поведение энтропии в процессах изменения агрегатного состояния. Рассмотрим три агрегатных состояния: твердое, жидкое и газообразное и два перехода к ним. Фазовый переход «твердое тело – жидкость» Из школьного курса физики хорошо известны четыре факта об этом переходе.
Слайд 19

6.3. Поведение энтропии в процессах изменения агрегатного состояния

Рассмотрим три агрегатных состояния: твердое, жидкое и газообразное и два перехода к ним. Фазовый переход «твердое тело – жидкость» Из школьного курса физики хорошо известны четыре факта об этом переходе.

1. Переход вещества из твердого состояния (фазы) в жидкое называется плавлением, а обратный – кристаллизация. 2. При плавлении система поглощает тепло, а при отвердевании – отдает….тепло. 3. В процессе плавления температура системы остается постоянной до тех пор, пока вся система не расплавится эта
Слайд 20

1. Переход вещества из твердого состояния (фазы) в жидкое называется плавлением, а обратный – кристаллизация. 2. При плавлении система поглощает тепло, а при отвердевании – отдает….тепло. 3. В процессе плавления температура системы остается постоянной до тех пор, пока вся система не расплавится эта температура называется температурой плавления.

4. Закон плавления: количество тепла Q, которое необходимо для плавления вещества массой dm, пропорционально этой массе: (6.3.1) Коэффициент пропорциональности λ есть константа, зависящая только от вещества системы и называемая удельной теплотой плавления.
Слайд 21

4. Закон плавления: количество тепла Q, которое необходимо для плавления вещества массой dm, пропорционально этой массе: (6.3.1) Коэффициент пропорциональности λ есть константа, зависящая только от вещества системы и называемая удельной теплотой плавления.

Этот закон справедлив и для кристаллизации, правда, с одним отличием: Q в этом случае – тепло выделяемое системой. В обобщенном виде закон можно записать так: при плавлении при кристаллизации
Слайд 22

Этот закон справедлив и для кристаллизации, правда, с одним отличием: Q в этом случае – тепло выделяемое системой. В обобщенном виде закон можно записать так: при плавлении при кристаллизации

Изменение энтропии в процессе этого фазового перехода можно найти просто, если считать процесс равновесным. Это вполне допустимое приближение, если считать, что разность температур между системой и тем объектом, который поставляет системе тепло, не слишком велика, намного меньше температуры плавлени
Слайд 23

Изменение энтропии в процессе этого фазового перехода можно найти просто, если считать процесс равновесным. Это вполне допустимое приближение, если считать, что разность температур между системой и тем объектом, который поставляет системе тепло, не слишком велика, намного меньше температуры плавления.

Тогда можно использовать термодинамический смысл энтропии: с точки зрения термодинамики энтропия – это такая функция состояния системы, изменение которой dS в элементарном равновесном процессе равно отношению порции тепла Q, которое система получает в этом процессе, к температуре системы Т:
Слайд 24

Тогда можно использовать термодинамический смысл энтропии: с точки зрения термодинамики энтропия – это такая функция состояния системы, изменение которой dS в элементарном равновесном процессе равно отношению порции тепла Q, которое система получает в этом процессе, к температуре системы Т:

или . Подставим сюда выражение для Q, получим: .
Слайд 25

или . Подставим сюда выражение для Q, получим: .

Так как температура системы в данном фазовом переходе не меняется и равна температуре плавления, то подынтегральное выражение это величина, которая в ходе процесса не меняется, поэтому она от массы m вещества не зависит. Тогда: .	(6.3.4)
Слайд 26

Так как температура системы в данном фазовом переходе не меняется и равна температуре плавления, то подынтегральное выражение это величина, которая в ходе процесса не меняется, поэтому она от массы m вещества не зависит. Тогда: . (6.3.4)

Из этой формулы следует, что при плавлении энтропия возрастает, а при кристаллизации уменьшается. Физический смысл этого результата достаточно ясен: фазовая область молекулы в твердом теле гораздо меньше, чем в жидкости, так как в твердом теле каждой молекуле доступна только малая область пространст
Слайд 27

Из этой формулы следует, что при плавлении энтропия возрастает, а при кристаллизации уменьшается. Физический смысл этого результата достаточно ясен: фазовая область молекулы в твердом теле гораздо меньше, чем в жидкости, так как в твердом теле каждой молекуле доступна только малая область пространства между соседними узлами кристаллической решетки, а в жидкости молекулы занимают всю область пространства.

Поэтому при равной температуре энтропия твердого тела меньше энтропии жидкости. Это означает, что твердое тело представляет собой более упорядоченную, и менее хаотичную систему, поэтому и энтропия его меньше, чем у жидкости.
Слайд 28

Поэтому при равной температуре энтропия твердого тела меньше энтропии жидкости. Это означает, что твердое тело представляет собой более упорядоченную, и менее хаотичную систему, поэтому и энтропия его меньше, чем у жидкости.

Фазовый переход «жидкость – газ». Этот переход обладает всеми свойствами перехода «твердое тело – жидкость». Существует четыре факта также знакомые из школьного курса физики. 1: переход вещества из жидкости в газовую фазу называется испарением, а обратный переход – конденсацией.
Слайд 29

Фазовый переход «жидкость – газ»

Этот переход обладает всеми свойствами перехода «твердое тело – жидкость». Существует четыре факта также знакомые из школьного курса физики. 1: переход вещества из жидкости в газовую фазу называется испарением, а обратный переход – конденсацией.

2: при испарении система поглощает тепло, при конденсации – теряет. 3: процессы испарения и конденсации протекают в широком диапазоне температур, но фазовым переходом они являются лишь тогда, когда процесс захватывает всю массу вещества. Это происходит при определенной температуре Тк, которая называ
Слайд 30

2: при испарении система поглощает тепло, при конденсации – теряет. 3: процессы испарения и конденсации протекают в широком диапазоне температур, но фазовым переходом они являются лишь тогда, когда процесс захватывает всю массу вещества. Это происходит при определенной температуре Тк, которая называется температурой кипения. Для каждого вещества температура кипения своя.

В процессе фазового перехода «жидкость – газ» температура остается постоянной и равной температуре кипения до тех пор, пока вся система не перейдет из одной фазы в другую. 4: закон испарения: количество тепла Q, необходимое для испарения вещества массой dm, пропорционально этой массе: . (6.3.5)
Слайд 31

В процессе фазового перехода «жидкость – газ» температура остается постоянной и равной температуре кипения до тех пор, пока вся система не перейдет из одной фазы в другую. 4: закон испарения: количество тепла Q, необходимое для испарения вещества массой dm, пропорционально этой массе: . (6.3.5)

Коэффициент пропорции r в этом выражении, есть константа, зависящая от вещества системы, называемая удельной теплотой испарения. Этот закон справедлив и для конденсации, правда с одним отличием: Q в этом случае – тепло выделяемое системой. Закон испарения можно записать в общем виде: (6.3.6) где зн
Слайд 32

Коэффициент пропорции r в этом выражении, есть константа, зависящая от вещества системы, называемая удельной теплотой испарения. Этот закон справедлив и для конденсации, правда с одним отличием: Q в этом случае – тепло выделяемое системой. Закон испарения можно записать в общем виде: (6.3.6) где знак плюс относится к испарению, а знак минус – к конденсации.

Изменение энтропии в этом процессе можно найти просто, считая процесс равновесным. И опять это вполне допустимое приближение, при условии, что разность температур между системой и «поставщиком» тепла невелика, т.е. намного меньше температуры кипения. Тогда изменение энтропии:
Слайд 33

Изменение энтропии в этом процессе можно найти просто, считая процесс равновесным. И опять это вполне допустимое приближение, при условии, что разность температур между системой и «поставщиком» тепла невелика, т.е. намного меньше температуры кипения. Тогда изменение энтропии:

Из формулы следует, что при испарении энтропия возрастает, а при конденсации уменьшается.
Слайд 34

Из формулы следует, что при испарении энтропия возрастает, а при конденсации уменьшается.

Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами
Слайд 35

Физический смысл этого результата состоит в различии фазовой области молекулы в жидкости и газе. Хотя в жидкости и газе каждой молекуле доступна вся область пространства, занятая системой, но сама эта область для жидкости существенно меньше, чем для газа. В жидкости силы притяжения между молекулами удерживают на определенном расстоянии друг от друга, поэтому каждая молекула хотя и имеет возможность свободно мигрировать по области пространства,

занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.
Слайд 36

занятой жидкостью, но не имеет возможности «оторваться от коллектива» остальных молекул: стоит ей оторваться от одной молекулы, как тут же притягивается другая. Поэтому объем жидкости зависит от её количества и никак не связан с объемом сосуда.

Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы, и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.
Слайд 37

Молекулы газа ведут себя иначе. У них гораздо больше свободы, среднее расстояние между ними таково, что силы притяжения очень малы, и молекулы «замечают друг друга» лишь при столкновениях. В результате газ всегда занимает весь объем сосуда.

Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости, и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система и энтропия газа больше энтропии жидкости.
Слайд 38

Поэтому при равных температурах фазовая область молекул газа значительно больше фазовой области молекул жидкости, и энтропия газа больше энтропии жидкости. Газ, по сравнению с жидкостью, гораздо менее упорядоченная, более хаотичная система и энтропия газа больше энтропии жидкости.

6.4. Изменения энтропии при обратимых и необратимых процессах. Итак, энтропия – отношение полученной или отданной системой теплоты в обратимом процессе, к температуре, при которой происходит эта передача. Энтропия – величина аддитивная, т.е. она равна сумме энтропий всех тел входящих в систему:
Слайд 39

6.4. Изменения энтропии при обратимых и необратимых процессах

Итак, энтропия – отношение полученной или отданной системой теплоты в обратимом процессе, к температуре, при которой происходит эта передача. Энтропия – величина аддитивная, т.е. она равна сумме энтропий всех тел входящих в систему:

Обратимый цикл Карно. Из п. 5.2 мы знаем, что, в тепловой машине, работающей по принципу Карно, имеются три тела: холодильник, нагреватель, рабочее тело (газ). Изменение энтропии газа так как газ возвращается в исходное состояние.
Слайд 40

Обратимый цикл Карно

Из п. 5.2 мы знаем, что, в тепловой машине, работающей по принципу Карно, имеются три тела: холодильник, нагреватель, рабочее тело (газ). Изменение энтропии газа так как газ возвращается в исходное состояние.

Изменение энтропии нагревателя: (6.4.1) Для холодильника: (6.4.2) А т.к.
Слайд 41

Изменение энтропии нагревателя: (6.4.1) Для холодильника: (6.4.2) А т.к.

то , т.е. или (6.4.3) т.е. S – константа. Это выражение называют равенство Клаузиуса.
Слайд 42

то , т.е. или (6.4.3) т.е. S – константа. Это выражение называют равенство Клаузиуса.

Необратимый цикл. Мы знаем, что т.е., (6.4.4) Отсюда тогда
Слайд 43

Необратимый цикл

Мы знаем, что т.е., (6.4.4) Отсюда тогда

Таким образом или (6.4.5) Это неравенство Клаузиуса. При любом необратимом процессе в замкнутой системе энтропия возрастает (dS > 0).
Слайд 44

Таким образом или (6.4.5) Это неравенство Клаузиуса. При любом необратимом процессе в замкнутой системе энтропия возрастает (dS > 0).

Тогда для замкнутой системы (6.4.7) – математическая запись второго начала термодинамики. Таким образом, для произвольного процесса, (6.4.6) где, знак равенства – для обратимого процесса; знак больше  для необратимого.
Слайд 45

Тогда для замкнутой системы (6.4.7) – математическая запись второго начала термодинамики.

Таким образом, для произвольного процесса, (6.4.6) где, знак равенства – для обратимого процесса; знак больше  для необратимого.

6.5. Второе начало термодинамики. Термодинамика, это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление
Слайд 46

6.5. Второе начало термодинамики

Термодинамика, это наука о тепловых процессах, о превращении тепловой энергии. Для описания термодинамических процессов первого начала термодинамики недостаточно. Выражая общий закон сохранения и превращения энергии, первое начало не позволяет определить направление протекания процессов.

Исторически второе начало термодинамики возникло из анализа работы тепловых двигателей. Рассмотрим схему теплового двигателя. От термостата с более высокой температурой Т1, называемого нагревателем за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому хол
Слайд 47

Исторически второе начало термодинамики возникло из анализа работы тепловых двигателей. Рассмотрим схему теплового двигателя. От термостата с более высокой температурой Т1, называемого нагревателем за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником за цикл передается количество теплоты Q2 и совершается работа

Чтобы термический коэффициент полезного действия теплового двигателя был , должно быть выполнено условие , т.е. тепловой двигатель должен иметь один источник теплоты, а это невозможно. Н. Карно в 1824 г. доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с различ
Слайд 49

Чтобы термический коэффициент полезного действия теплового двигателя был , должно быть выполнено условие , т.е. тепловой двигатель должен иметь один источник теплоты, а это невозможно. Н. Карно в 1824 г. доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с различными температурами. Невозможность создания вечного двигателя второго рода подтверждается вторым началом термодинамики:

1. Невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от нагревателя в эквивалентную ей работу (формулировка Кельвина) 2. Невозможен вечный двигатель второго рода (формулировка Томпсона-Планка). 3. Невозможен процесс, единственным результатом которого
Слайд 50

1. Невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от нагревателя в эквивалентную ей работу (формулировка Кельвина) 2. Невозможен вечный двигатель второго рода (формулировка Томпсона-Планка). 3. Невозможен процесс, единственным результатом которого является передача энергии от холодного тела к горячему (формулировка Клаузиуса).

Математической формулировкой второго начала является выражение Энтропия замкнутой системы при любых происходивших в ней процессах не может убывать (или увеличивается или остается неизменной).
Слайд 51

Математической формулировкой второго начала является выражение Энтропия замкнутой системы при любых происходивших в ней процессах не может убывать (или увеличивается или остается неизменной).

При обратимомном процессе (6.5.1) При необратимом процессе, как доказал Клаузиус (6.5.2)  изменение энтропии больше приведенной теплоты. Тогда тогда эти выражения можно объединить: (6.5.3)
Слайд 52

При обратимомном процессе (6.5.1) При необратимом процессе, как доказал Клаузиус (6.5.2)  изменение энтропии больше приведенной теплоты. Тогда тогда эти выражения можно объединить: (6.5.3)

Первое и второе начала термодинамики в объединенной форме имеют вид: (6.5.4)
Слайд 53

Первое и второе начала термодинамики в объединенной форме имеют вид: (6.5.4)

6.6. Свободная и связанная энергии. Как следует из первого и второго начала термодинамики в объединенной форме в обратимом процессе: Это равенство можно переписать в виде .
Слайд 54

6.6. Свободная и связанная энергии

Как следует из первого и второго начала термодинамики в объединенной форме в обратимом процессе: Это равенство можно переписать в виде .

Обозначим, , где F – разность двух функций состояний, поэтому сама является также функцией состояния. Ее назвали свободной энергией. Тогда (6.6.1) Если тело совершает обратимый изотермический процесс, то
Слайд 55

Обозначим, , где F – разность двух функций состояний, поэтому сама является также функцией состояния. Ее назвали свободной энергией. Тогда (6.6.1) Если тело совершает обратимый изотермический процесс, то

следовательно свободная энергия есть та работа, которую могло бы совершить тело в обратимом изотермическом процессе или, свободная энергия – есть максимальная возможная работа, которую может совершить система, обладая каким-то запасом внутренней энергии.
Слайд 56

следовательно свободная энергия есть та работа, которую могло бы совершить тело в обратимом изотермическом процессе или, свободная энергия – есть максимальная возможная работа, которую может совершить система, обладая каким-то запасом внутренней энергии.

Связанная энергия – та часть внутренней энергии, которая не может быть превращена в работу – это обесцененная часть внутренней энергии. При одной и той же температуре, связанная энергия тем больше, чем больше энтропия. Таким образом, энтропия системы есть мера обесцененности ее энергии (т.е. мера то
Слайд 57

Связанная энергия – та часть внутренней энергии, которая не может быть превращена в работу – это обесцененная часть внутренней энергии. При одной и той же температуре, связанная энергия тем больше, чем больше энтропия. Таким образом, энтропия системы есть мера обесцененности ее энергии (т.е. мера той энергии, которая не может быть превращена в работу).

Внутренняя энергия системы U равна сумме свободной (F) и связанной энергии (TS):

В термодинамике есть еще понятие – энергетическая потеря в изолированной системе (6.6.3)
Слайд 58

В термодинамике есть еще понятие – энергетическая потеря в изолированной системе (6.6.3)

При любом необратимом процессе энтропия увеличивается до того, пока не прекратятся какие-либо процессы, т.е. пока не станет F = 0. Это произойдет, при достижении замкнутой системы равновесного состояния, т.е. когда все параметры состояния системы (Р, Т) во всех точках системы станут одинаковыми. Выв
Слайд 59

При любом необратимом процессе энтропия увеличивается до того, пока не прекратятся какие-либо процессы, т.е. пока не станет F = 0. Это произойдет, при достижении замкнутой системы равновесного состояния, т.е. когда все параметры состояния системы (Р, Т) во всех точках системы станут одинаковыми. Вывести систему из этого равновесного состояния можно только затратив энергию из вне. На основании этих рассуждений Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной.

6.7. Статистический смысл энтропии. Посмотрим на энтропию с другой стороны.
Слайд 60

6.7. Статистический смысл энтропии

Посмотрим на энтропию с другой стороны.

Макросостояние – это состояние вещества, характеризуемое его термодинамическими параметрами. Состояние же системы, характеризуемое состоянием каждой входящей в систему молекулы, называют микросостоянием. Так как молекулы движутся хаотически, то имеется много микросостояний, соответствующих одному ма
Слайд 61

Макросостояние – это состояние вещества, характеризуемое его термодинамическими параметрами. Состояние же системы, характеризуемое состоянием каждой входящей в систему молекулы, называют микросостоянием. Так как молекулы движутся хаотически, то имеется много микросостояний, соответствующих одному макросостоянию. Обозначим W  число микросостояний соответствующее данному макросостоянию (как правило W >> 1).

Термодинамической вероятностью или статистическим весом макросостояния W  называется число микросостояний, осуществляющих данное макросостояние (или число перестановок одноименных элементов, при которых сохраняется данное макросостояние). Термодинамическая вероятность W  максимальна, когда система
Слайд 62

Термодинамической вероятностью или статистическим весом макросостояния W  называется число микросостояний, осуществляющих данное макросостояние (или число перестановок одноименных элементов, при которых сохраняется данное макросостояние). Термодинамическая вероятность W  максимальна, когда система находится в равновесном состоянии.

В состоянии равновесия в термодинамике и вероятность максимальна и энтропия максимальна. Из этого можно сделать вывод, что между ними существует связь. Но!!! Энтропия S – аддитивная величина: , т.е. она равна сумме энтропий тел, входящих в систему.
Слайд 63

В состоянии равновесия в термодинамике и вероятность максимальна и энтропия максимальна. Из этого можно сделать вывод, что между ними существует связь. Но!!! Энтропия S – аддитивная величина: , т.е. она равна сумме энтропий тел, входящих в систему.

А вероятность сложного события, есть произведение вероятностей где W1 – первое состояние; W2 – второе состояние. Аддитивной величиной является логарифм W: термодинамическая вероятность или статистический вес.
Слайд 64

А вероятность сложного события, есть произведение вероятностей где W1 – первое состояние; W2 – второе состояние. Аддитивной величиной является логарифм W: термодинамическая вероятность или статистический вес.

Больцман предложил, что (6.7.1) где k – коэффициент Больцмана. С этой точки зрения энтропия выступает, как мера беспорядочности, хаотичности состояния. Например, в ящике черные и белые шары. Они порознь, есть порядок и W невелика. После встряхивания – шары перемещаются и W – увеличивается и энтропия
Слайд 65

Больцман предложил, что (6.7.1) где k – коэффициент Больцмана. С этой точки зрения энтропия выступает, как мера беспорядочности, хаотичности состояния. Например, в ящике черные и белые шары. Они порознь, есть порядок и W невелика. После встряхивания – шары перемещаются и W – увеличивается и энтропия. И сколько бы не встряхивать потом ящик, никогда черные шары не соберутся у одной стенки, а белые у другой, хотя эта вероятность не равна нулю.

Связь между S и W позволяет несколько иначе сформулировать второе начало термодинамики: наиболее вероятным изменением энтропии является ее возрастание.
Слайд 66

Связь между S и W позволяет несколько иначе сформулировать второе начало термодинамики: наиболее вероятным изменением энтропии является ее возрастание.

Энтропия – вероятностная статистическая величина. Утверждение о возрастании энтропии потеряло свою категоричность. Её увеличение вероятно, но не исключаются флуктуации. До этих рассуждений Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной (о ней сказано ранее). Л. Больцман один из пер
Слайд 67

Энтропия – вероятностная статистическая величина. Утверждение о возрастании энтропии потеряло свою категоричность. Её увеличение вероятно, но не исключаются флуктуации. До этих рассуждений Клаузиус в 1867 г. выдвинул гипотезу о тепловой смерти Вселенной (о ней сказано ранее). Л. Больцман один из первых опроверг эту гипотезу и показал, что закон возрастания энтропии – статистический закон, т.е. возможны отклонения.

Российские физики Я.Б. Зельдович и И.Д. Новиков, так же опровергли эту теорию, и показали, что Р. Клаузиус не учел, что Вселенная не стационарна и в будущем не перейдет к одному состоянию, так как она эволюционирует, остается не статичной. Энтропия системы – максимальна, при достижении замкнутой сис
Слайд 68

Российские физики Я.Б. Зельдович и И.Д. Новиков, так же опровергли эту теорию, и показали, что Р. Клаузиус не учел, что Вселенная не стационарна и в будущем не перейдет к одному состоянию, так как она эволюционирует, остается не статичной. Энтропия системы – максимальна, при достижении замкнутой системой равновесного состояния.

6.8. Третье начало термодинамики. Недостатки первого и второго начал термодинамики в том, что они не позволяют определить значение энтропии при абсолютном нуле Т = 0º К. На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон,
Слайд 69

6.8. Третье начало термодинамики

Недостатки первого и второго начал термодинамики в том, что они не позволяют определить значение энтропии при абсолютном нуле Т = 0º К. На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанный недостаток. Сформулировал его в 1906 г. Нернст и называется он третьим началом термодинамики, или теоремой Нернста.

Нернст Вальтер Фридрих Герман (1864 – 1941) – немецкий физик и физико- химик, один из основоположников физической химии. Работы в области термодинамики, физики низких температур, физической химии. Высказал утверждение, что энтропия химически однородного твердого или жидкого тела при абсолютном нуле
Слайд 70

Нернст Вальтер Фридрих Герман (1864 – 1941) – немецкий физик и физико- химик, один из основоположников физической химии. Работы в области термодинамики, физики низких температур, физической химии. Высказал утверждение, что энтропия химически однородного твердого или жидкого тела при абсолютном нуле равна нулю (теорема Нернста). Предсказал эффект «вырождения» газа.

Согласно Нернсту, изменение энтропии S стремится к нулю при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю (S → 0 при Т → 0). Нернст сформулировал теорему для изолированных систем, а затем М. Планк расп
Слайд 71

Согласно Нернсту, изменение энтропии S стремится к нулю при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю (S → 0 при Т → 0). Нернст сформулировал теорему для изолированных систем, а затем М. Планк распространил ее на случай любых систем, находящихся в термодинамическом равновесии.

Как первое и второе начала термодинамики, теорема Нернста может рассматриваться как результат обобщения опытных фактов, поэтому ее часто называют третьим началом термодинамики: энтропия любой равновесной системы при абсолютном нуле температуры может быть равна нулю.
Слайд 72

Как первое и второе начала термодинамики, теорема Нернста может рассматриваться как результат обобщения опытных фактов, поэтому ее часто называют третьим началом термодинамики: энтропия любой равновесной системы при абсолютном нуле температуры может быть равна нулю.

Отсюда следует, что при T  0 интеграл сходится на нижнем пределе, т.е. имеет конечное значение S(0) = const или S(0) = 0, причем равенство нулю рассматривается как наиболее вероятное. А нулевое значение энтропии (меры беспорядка) соответствует отсутствию теплового движения при абсолютном нуле.
Слайд 73

Отсюда следует, что при T  0 интеграл сходится на нижнем пределе, т.е. имеет конечное значение S(0) = const или S(0) = 0, причем равенство нулю рассматривается как наиболее вероятное. А нулевое значение энтропии (меры беспорядка) соответствует отсутствию теплового движения при абсолютном нуле.

При T = 0, внутренняя энергия и тепловая функция системы прекращают зависеть от температуры, кроме того, используя метод термодинамических функций, можно показать, что при T = 0, от температуры независит коэффициент объемного расширения, термический коэффициент давления и другие параметры системы.
Слайд 74

При T = 0, внутренняя энергия и тепловая функция системы прекращают зависеть от температуры, кроме того, используя метод термодинамических функций, можно показать, что при T = 0, от температуры независит коэффициент объемного расширения, термический коэффициент давления и другие параметры системы.

Согласно классическим представлениям при абсолютном нуле, возможно непрерывное множество микросостояний системы. Объяснение теоремы Нернста можно дать только на основании квантово-механических представлений.
Слайд 75

Согласно классическим представлениям при абсолютном нуле, возможно непрерывное множество микросостояний системы. Объяснение теоремы Нернста можно дать только на основании квантово-механических представлений.

Третье начало термодинамики иногда формулируют следующим образом: при абсолютном нуле температуры любые изменения термодинамической системы происходят без изменения энтропии: т.е. или
Слайд 76

Третье начало термодинамики иногда формулируют следующим образом: при абсолютном нуле температуры любые изменения термодинамической системы происходят без изменения энтропии: т.е. или

Принцип Нернста бал развит Планком, предположившим, что при абсолютном нуле температуры энергия системы минимальна (но не равна нулю). Тогда можно считать, что при абсолютном нуле система имеет одно квантовое состояние: значит термодинамическая вероятность W при Т = 0º должна быть равна единице, что
Слайд 77

Принцип Нернста бал развит Планком, предположившим, что при абсолютном нуле температуры энергия системы минимальна (но не равна нулю). Тогда можно считать, что при абсолютном нуле система имеет одно квантовое состояние: значит термодинамическая вероятность W при Т = 0º должна быть равна единице, что недостижимо (принцип недостижимости абсолютного нуля температуры)

Следствием Третьего начала является то что, невозможно охладить тело до абсолютного нуля (принцип недостижимости абсолютного нуля температуры). Иначе был бы возможен вечный двигатель II рода (какой это двигатель?)
Слайд 78

Следствием Третьего начала является то что, невозможно охладить тело до абсолютного нуля (принцип недостижимости абсолютного нуля температуры). Иначе был бы возможен вечный двигатель II рода (какой это двигатель?)

Список похожих презентаций

Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
Атомная физика

Атомная физика

СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. Опыт Резерфорда. Определение размеров. атомного ядра Планетарная модель атома. Планетарная модель ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:30 сентября 2018
Категория:Физика
Содержит:78 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации