- Генерирование электрической энергии

Презентация "Генерирование электрической энергии" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Генерирование электрической энергии" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Генерирование электрической энергии.
Слайд 1

Генерирование электрической энергии.

ПЛАН: 1.Вступление. 2. Традиционные способы. 2.1. ГЭС 2.2. АЭС. 3. Альтернативные способы. 3.1. Солнце. 3.2. Ветер. 3.3. Приливы и волны. 3.4. Энергия земли. 4. Заключение. 5. Список использованных источников.
Слайд 2

ПЛАН:

1.Вступление. 2. Традиционные способы. 2.1. ГЭС 2.2. АЭС. 3. Альтернативные способы. 3.1. Солнце. 3.2. Ветер. 3.3. Приливы и волны. 3.4. Энергия земли. 4. Заключение. 5. Список использованных источников.

Вступление. На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых т
Слайд 3

Вступление.

На пороге ХХI века человек все чаще и чаще стал задумываться о том, что станет основой его существования в новой эре. Энергия была и остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать. Homo Sapiens прошел путь от первого костра до атомных электростанций, освоил добычу основных традиционных энергетических ресурсов - угля, нефти и газа, научился использовать энергию рек, освоил “мирный атом”, но все активнее обсуждаются вопросы использования новых нетрадиционных, альтернативных видов энергии.

Традиционные способы.
Слайд 4

Традиционные способы.

ГЭС. Примерно 1/5 часть энергии, потребляемой во всём мире, вырабатывают на ГЭС. Её получают, преобразуя энергию падающей воды в энергию вращения турбин, которая в свою очередь вращает генератор, вырабатывающий электричество. Гидростанции бывают очень мощными. Так, станция Итапу на реке Парана на гр
Слайд 5

ГЭС.

Примерно 1/5 часть энергии, потребляемой во всём мире, вырабатывают на ГЭС. Её получают, преобразуя энергию падающей воды в энергию вращения турбин, которая в свою очередь вращает генератор, вырабатывающий электричество. Гидростанции бывают очень мощными. Так, станция Итапу на реке Парана на границе между Бразилией и Парагваем развивает мощность до13 000 млн.кВт. Энергия малых рек также в ряде случаев может стать источником электроэнергии. Возможно, для использования этого источника необходимы специфические условия (например, речки с сильным течением), но в ряде мест его, где обычное электроснабжение невыгодно, установка мини-ГЭС могла бы решить множество локальных проблем.

АЭС. Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в СССР, в городе Обнинск. Мировыми лидерами в производстве ядерной электроэнергии являются: США (788,6 млрд кВт·ч/год), Франция (426,8 млрд кВт·ч/год), Япония (273,8 млрд кВт·ч/год), Германия (158,
Слайд 6

АЭС.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в СССР, в городе Обнинск. Мировыми лидерами в производстве ядерной электроэнергии являются: США (788,6 млрд кВт·ч/год), Франция (426,8 млрд кВт·ч/год), Япония (273,8 млрд кВт·ч/год), Германия (158,4 млрд кВт·ч/год) и Россия (154,7 млрд кВт·ч/год). Крупнейшая АЭС в Европе — Запорожская АЭС у г. Энергодар (Запорожская область, Украина), строительство которой начато в 1980 г. На середину 2008 г. работают 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая АЭС в мире Касивадзаки-Карива по установленной мощности (на 2008 год) находится в Японском городе Касивадзаки префектуры Ниигата — в эксплуатации находятся пять кипящих ядерных реакторов (BWR) и два продвинутых кипящих ядерных реакторов (ABWR), суммарная мощность которых составляет 8,212 ГВт

Устройство аэс.
Слайд 7

Устройство аэс.

Альтернативные способы.
Слайд 8

Альтернативные способы.

Солнце. Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию св
Слайд 9

Солнце.

Солнце - неисчерпаемый источник энергии - ежесекундно дает Земле 80 триллионов киловатт, то есть в несколько тысяч раз больше, чем все электростанции мира. Нужно только уметь пользоваться им. Например, Тибет - самая близкая к Солнцу часть нашей планеты - по праву считает солнечную энергию своим богатством. На сегодня в Тибетском автономном районе Китая построено уже более пятидесяти тысяч гелиопечей. Солнечной энергией отапливаются жилые помещения площадью 150 тысяч квадратных метров, созданы гелиотеплицы общей площадью миллион квадратных метров.

Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданны
Слайд 10

Хотя солнечная энергия и бесплатна, получение электричества из нее не всегда достаточно дешево. Поэтому специалисты непрерывно стремятся усовершенствовать солнечные элементы и сделать их эффективнее. Новый рекорд в этом отношении принадлежит Центру прогрессивных технологий компании “Боинг”. Созданный там солнечный элемент преобразует в электроэнергию 37 процентов попавшего на него солнечного света. Это достижение стало возможным благодаря использованию двухслойной конструкции. Верхний слой - из арсенида галлия. Он поглощает излучение видимой части спектра. Нижний слой - из антимонида галлия и предназначен улавливать инфракрасное излучение, которое обычно теряется.

Ветер. На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. Но ветер - это очень рассеянный энергоресурс. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро
Слайд 11

Ветер.

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. Но ветер - это очень рассеянный энергоресурс. Ветровая энергия практически всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом. Существуют интересные разработки по созданию принципиально новых механизмов для преобразования энергии ветра в электрическую. Одна из таких установок (патент РФ № 1783144) порождает искусственный сверхураган внутри себя при скорости ветра в 5 м/с!

Приливы и волны. Первая большая электростанция, работающая на энергии приливов, была построена в 1968г. в устье реки Ранс (Франция). Электростанция работает следующим образом. Когда начинается отлив, заслонки в дамбе закрывают, поддерживая высокий уровень воды за плотиной. При разнице уровней в 3 м.
Слайд 12

Приливы и волны.

Первая большая электростанция, работающая на энергии приливов, была построена в 1968г. в устье реки Ранс (Франция). Электростанция работает следующим образом. Когда начинается отлив, заслонки в дамбе закрывают, поддерживая высокий уровень воды за плотиной. При разнице уровней в 3 м. заслонки открывают, и вода устремляется в море, вращая лопатки 24-х больших турбин, а вместе с ними и роторы электрогенераторов. Когда опять начинается прилив, вода через открытые заслонки проходит за плотину, и цикл повторяется. Также можно использовать энергию морских волн, образуемых ветром. Ветры, дующие на пространствах океана, вызывают волны, обладающие большим запасом энергии. Волны могут служить источником энергии. Перспективная конструкция с поплавками разработана Солтером в Эдинбургском университете. Поплавки, двигаясь вверх-вниз при прохождении волны, приводят в движение насосы, которые нагнетают воду, а та поступает в турбину, вырабатывающую электроэнергию.

Энергия земли. Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией.
Слайд 13

Энергия земли.

Тепло от горячих горных пород в земной коре тоже может генерировать электричество. Через пробуренные в горной породе скважины вниз накачивается холодная вода, а в вверх поднимается образованный из воды пар, который вращает турбину. Такой вид энергии называется геотермальной энергией. Она используется, например, в Новой Зеландии и Исландии.

Заключение. В обозримом будущем природное топливо по-прежнему будет важным источником энергии. Однако природные ресурсы ограничены, и в конце концов человечество будет вынуждено перейти на использование энергии ветра и Солнца, о чем с незапамятных времен мечтают защитники окружающей среды. А на данн
Слайд 14

Заключение.

В обозримом будущем природное топливо по-прежнему будет важным источником энергии. Однако природные ресурсы ограничены, и в конце концов человечество будет вынуждено перейти на использование энергии ветра и Солнца, о чем с незапамятных времен мечтают защитники окружающей среды. А на данный момент перед человечеством стоит более неотложная задача: остановить перегревание планеты и сделать это как можно быстрее. Благодаря новейшим разработкам науки и техники, внедрение которых уже становится реальностью, угроза глобального потепления кажется теперь не столь устрашающей, какой она представлялась еще несколько лет назад.

Список использованных источников. Электронная энциклопедия Кирилла и Мефодия. Интернет энциклопедия «Википедия».
Слайд 15

Список использованных источников.

Электронная энциклопедия Кирилла и Мефодия. Интернет энциклопедия «Википедия».

Список похожих презентаций

Производство, передача и использование электрической энергии

Производство, передача и использование электрической энергии

Цель проекта: Понимание производства, передачи и использования электрической энергии. Задачи проекта, рассмотреть: Генерирование электрической энергии. ...
Трансформатор. Передача электрической энергии на расстояние

Трансформатор. Передача электрической энергии на расстояние

Назначение трансформаторов. Преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без ...
Производство,передача и использование электрической энергии

Производство,передача и использование электрической энергии

Генераторы-. устройства,преобразую-щие энергию того или иного вида в электрическую энергию. Виды генераторов: гальванические элементы. Электростатическая ...
Производство и использование электрической энергии

Производство и использование электрической энергии

Электричество кругом, Полон им завод и дом, Везде заряды: там и тут В любом атоме «живут». А если вдруг они бегут, То тут же токи создают. Нам токи ...
Производство и использование электрической энергии

Производство и использование электрической энергии

ПРОБЛЕМА, СТОЯЩАЯ ПЕРЕД ЧЕЛОВЕЧЕСТВОМ. Сможет ли существовать человечество если будут исчерпаны все природные источники углеводородного сырья? ХОД ...
Требования по обеспечению учета электрической энергии для потребителей с максимальной мощностью свыше 670 кВт

Требования по обеспечению учета электрической энергии для потребителей с максимальной мощностью свыше 670 кВт

Требования к учету. ПП №442, Раздел X. «Правила организации учета электрической энергии на розничных рынках» описывает: Требования к коммерческому ...
Потребление и экономия электрической энергии в школе и дома

Потребление и экономия электрической энергии в школе и дома

Цели проекта. изучить структуру бытового потребления электроэнергии рассчитать стоимость потребляемой электроэнергии разработать рекомендации по экономии ...
Генерирование и преобразование энергии

Генерирование и преобразование энергии

Переменный ток. Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током Переменный ток, в отличие ...
Понятие об энергии мех. системы

Понятие об энергии мех. системы

МЕХАНИЧЕСКАЯ РАБОТА. Изменение мех. дв. и эн. тела происходит в процессе силового вз-вия этого тела с другими телами. Для колич. хар-ки процесса обмена ...
Альтернативные источники энергии

Альтернативные источники энергии

Энергия жизни. Альтернативные источники энергии. Цель урока: Больше узнать об источниках энергии Проверить и закрепить свои знания по физике и химии. ...
Способы изменения внутренней энергии тела

Способы изменения внутренней энергии тела

Если над телом совершать работу, то внутренняя энергия этого тела увеличится. Если работу совершает само тело, то его внутренняя энергия уменьшается. ...
Возобновляемые источники энергии

Возобновляемые источники энергии

, греч. “сила, мощность”. Так как ископаемые источники энергии, а также сам уран, для атомной промышленности встречаются в мире только в ограниченном ...
Применение ядерной энергии

Применение ядерной энергии

Ядерный реактор. • это устройство, предназначенное для осуществления управляемой ядерной реакции. История. 1895 г. В.К.Рентген открывает ионизирующее ...
Закон сохранения внутренней энергии

Закон сохранения внутренней энергии

Цель урока:. Знать формулировку закона сохранения энергии и уметь применять его для решения задач. Kакой буквой обозначают количество теплоты? A Q ...
Генерирование переменного электрического тока

Генерирование переменного электрического тока

Электрический ток вырабатывается в генераторах – устройствах, преобразующих энергию того или иного вида в электрическую энергию. К генераторам относятся ...
Гелиоэнергетика: преобразование солнечной энергии в тепловую

Гелиоэнергетика: преобразование солнечной энергии в тепловую

ЦЕЛЬ ИССЛЕДОВАНИЯ. Целью исследования является: Продемонстрировать способ преобразования солнечной энергии в тепловую; ЗАДАЧИ Рассмотреть альтернативный ...
Все об энергии топлива

Все об энергии топлива

Виды топлива. Использование:. Топливо… обладает большой удельной теплотой сгорания низкой температурой воспламенения отсутствием вредных продуктов ...
Возобновляемые источники энергии

Возобновляемые источники энергии

Солнечная энергия. Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения ...
Превращение энергии при колебательном движении. Затухающие колебания

Превращение энергии при колебательном движении. Затухающие колебания

Для любого промежуточного положения на пути ВО сумма потенциальной и кинетической энергии есть постоянная величина, равная первоначальному запасу ...

Конспекты

Генераторы. Трансформаторы. Передача электрической энергии на расстояние

Генераторы. Трансформаторы. Передача электрической энергии на расстояние

Учитель. : Абигузина Сандугаш Кудасбаевна. . . Предмет:. физика. Класс:. 8 «Б». Тема урока:. Генераторы. Трансформаторы. Передача электрической ...
Способы изменения внутренней энергии тела

Способы изменения внутренней энергии тела

«Без сомнения, все наше знание начинается с опыта » (И.Кант, немецкий философ, 1724-1804 г.). Урок-исследование. «Способы изменения внутренней ...
Решение задач. Потенциальная и кинетическая энергии

Решение задач. Потенциальная и кинетическая энергии

Урок по теме. «Решение задач. Потенциальная и кинетическая энергии.». Тип урока – ролевая игра ( с использованием РК). Цель. :. Образовательная:. ...
Превращение одного вида механической энергии в другой

Превращение одного вида механической энергии в другой

. Базанова Наталья Геннадьевна,. учитель физики, МБОУ СОШ № 85, г. Хабаровск. Урок. Физика. 7 класс. Тема: Превращение одного вида механической ...
количетво теплоты .Закон сохранения энергии

количетво теплоты .Закон сохранения энергии

Урок .решение задач на темы « количетво теплоты .Закон сохранения энергии.». Класс:. 8. Предмет:. физика. Тема:. Обобщение материала по темам: ...
Колебательный контур. Превращения энергии в колебательном контуре

Колебательный контур. Превращения энергии в колебательном контуре

. УРОК ПО ФИЗИКЕ № 1. 11 класс. Тема. . урока. :. Колебательный. . контур. . . Превращения. ...
Кинетическая энергия. Теорема об изменении кинетической энергии

Кинетическая энергия. Теорема об изменении кинетической энергии

Дата. Класс – 10. . Предмет: физика. Тема урока: Кинетическая энергия. Теорема об изменении кинетической энергии. Субкомпетенции:. . показать, ...
Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Испарение. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

Технологическая карта урока № 18/1. ФИО автора: Кондратенко Надежда Витальевна. Должность: учитель физики и математики. Место работы: ФГКОУ ...
Закон сохранения механической энергии

Закон сохранения механической энергии

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №2. г. Навашино Нижегородской области. Конспект ...
Закон сохранения механической энергии

Закон сохранения механической энергии

Муниципальное общеобразовательное учреждение. средняя общеобразовательная школа №2. г. Навашино Нижегородской области. Конспект ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:23 сентября 2018
Категория:Физика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации