- Развитие атомно-молекулярной гипотезы

Презентация "Развитие атомно-молекулярной гипотезы" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Развитие атомно-молекулярной гипотезы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

Развитие атомно-молекулярной гипотезы. © В.Е . Фрадкин СПб АППО – РГПУ, 2006. Из коллекции www.eduspb.com
Слайд 1

Развитие атомно-молекулярной гипотезы

© В.Е . Фрадкин СПб АППО – РГПУ, 2006

Из коллекции www.eduspb.com

Периоды развития физики как науки. Предыстория физики (от древнейших времен до XVII в.) Эпоха античности (VI в. до н.э. – V в. н.э.) Средние века (VI – XIV вв.) Эпоха возрождения (XV – XVI вв.)
Слайд 2

Периоды развития физики как науки

Предыстория физики (от древнейших времен до XVII в.) Эпоха античности (VI в. до н.э. – V в. н.э.) Средние века (VI – XIV вв.) Эпоха возрождения (XV – XVI вв.)

Период становления физики как науки (н. XVII – 80-е гг. XVII в.) Г. Галилей, Р. Бойль, И. Ньютон, Р. Гук, Р. Декарт, Х. Гюгенс
Слайд 3

Период становления физики как науки (н. XVII – 80-е гг. XVII в.) Г. Галилей, Р. Бойль, И. Ньютон, Р. Гук, Р. Декарт, Х. Гюгенс

Период классической физики: Первый этап (конец ХVII в. – 60-е гг. ХIХ в.) Второй этап (60-е гг. ХIХ в. – 1894 г.) Третий этап (1895 – 1904 гг.)
Слайд 4

Период классической физики: Первый этап (конец ХVII в. – 60-е гг. ХIХ в.) Второй этап (60-е гг. ХIХ в. – 1894 г.) Третий этап (1895 – 1904 гг.)

Период современной физики: Первый этап (1905 – 1931 гг.) Второй этап (1932 – 1954 гг.) Третий этап (с 1955 гг.)
Слайд 5

Период современной физики: Первый этап (1905 – 1931 гг.) Второй этап (1932 – 1954 гг.) Третий этап (с 1955 гг.)

ФАЛЕС МИЛЕТСКИЙ (ок. 625 - ок. 547 до н.э.). Родоначальник античной философии и науки, основатель милетской (ионийской) школы. Возводил все многообразие явлений и вещей к единой первостихии - воде. Первые сведения об электризации, магнетизме.
Слайд 6

ФАЛЕС МИЛЕТСКИЙ (ок. 625 - ок. 547 до н.э.)

Родоначальник античной философии и науки, основатель милетской (ионийской) школы. Возводил все многообразие явлений и вещей к единой первостихии - воде. Первые сведения об электризации, магнетизме.

АНАКСАГОР из Клазомен (ок. 500 – 428 до н.э.). Принцип «из ничего ничего не возникает». Образование космоса объясняется соединением и разъединением первичных элементов («гомеомерии», т.е. подобочастные). Начальное состояние мира, согласно Анаксагору, представляло собой неподвижную бесформенную смесь
Слайд 7

АНАКСАГОР из Клазомен (ок. 500 – 428 до н.э.)

Принцип «из ничего ничего не возникает». Образование космоса объясняется соединением и разъединением первичных элементов («гомеомерии», т.е. подобочастные).

Начальное состояние мира, согласно Анаксагору, представляло собой неподвижную бесформенную смесь, состоявшую из бесчисленного множества частиц («семян») всевозможных веществ.

В какой-то момент времени эта первичная смесь была приведена в круговое движение «чистым несмешанным Умом». Так как подобное стремится к подобному, сходные частицы стали образовывать отдельные скопления, и так возник мир вещей. Вещество делимо до бесконечности, «в мире нет наименьшего», и процесс об
Слайд 8

В какой-то момент времени эта первичная смесь была приведена в круговое движение «чистым несмешанным Умом». Так как подобное стремится к подобному, сходные частицы стали образовывать отдельные скопления, и так возник мир вещей. Вещество делимо до бесконечности, «в мире нет наименьшего», и процесс обособления никогда не может быть полным. Всякая вещь имеет частицы всех других вещей, «все содержит долю всего», а получают свое наименование вещи по количественному преобладанию семян того или иного вида. Ум у Анаксагора наделен характеристиками физического и метафизического бытия: с одной стороны, он «легчайшая» из всех вещей, с другой – он «содержит полное знание обо всем и имеет величайшую силу».

ДЕМОКРИТ (ок. 460 - 370 гг. до н. э.). В сочинении «Малый диакосмос» изложил свое учение о естественном возникновении и развитии мира. В основе мира лежат два начала - атомы и пустота. Атомы - мельчайшие, неделимые частицы, которые носятся в пустоте и отличаются друг от друга лишь формой, величиной
Слайд 9

ДЕМОКРИТ (ок. 460 - 370 гг. до н. э.)

В сочинении «Малый диакосмос» изложил свое учение о естественном возникновении и развитии мира.

В основе мира лежат два начала - атомы и пустота. Атомы - мельчайшие, неделимые частицы, которые носятся в пустоте и отличаются друг от друга лишь формой, величиной и положением. Атомы численно бесконечны, вечны и неизменны.

Сталкиваясь и сцепляясь между собой, они образуют тела и вещи, с которыми мы имеем дело в повседневной жизни. Окружающие нас вещи мы воспринимаем с помощью чувств, тогда как атомы постигаются разумом. Считал, что во Вселенной существует бесчисленное множество миров, которые возникают, развиваются и
Слайд 10

Сталкиваясь и сцепляясь между собой, они образуют тела и вещи, с которыми мы имеем дело в повседневной жизни. Окружающие нас вещи мы воспринимаем с помощью чувств, тогда как атомы постигаются разумом.

Считал, что во Вселенной существует бесчисленное множество миров, которые возникают, развиваются и гибнут.

АРИСТОТЕЛЬ (384-322 до н. э.). Сочинения относятся ко всем областям знания того времени. Собрал и систематизировал огромный естественнонаучный материал своих предшественников, критически его оценил, исходя из своих философских взглядов, и сам осуществил ряд глубоких наблюдений. В физических трактата
Слайд 11

АРИСТОТЕЛЬ (384-322 до н. э.)

Сочинения относятся ко всем областям знания того времени. Собрал и систематизировал огромный естественнонаучный материал своих предшественников, критически его оценил, исходя из своих философских взглядов, и сам осуществил ряд глубоких наблюдений. В физических трактатах «Физика», «О происхождении и уничтожении», «О небе», «О метеорологических вопросах», «Механика» и других изложил свои представления о природе и движении.

Первичными качествами материи он считал две пары противоположностей «теплое — холодное» и «сухое — влажное», основными (низшими) элементами, или стихиями,— землю, воздух, воду и огонь (своеобразная «система элементов»), которые являются различными комбинациями первичных качеств; соединению холодного
Слайд 12

Первичными качествами материи он считал две пары противоположностей «теплое — холодное» и «сухое — влажное», основными (низшими) элементами, или стихиями,— землю, воздух, воду и огонь (своеобразная «система элементов»), которые являются различными комбинациями первичных качеств; соединению холодного с сухим соответствует земля, холодного с влажным — вода, теплого с влажным — воздух, теплого с сухим — огонь. Пятым, наиболее совершенным элементом считал эфир.

Вселенная состоит из ряда концентрических хрустальных сфер, которые движутся с разными скоростями и приводятся в движение крайней сферой неподвижных звезд; в центре Вселенной расположена шарообразная неподвижная Земля, вокруг которой по концентрическим окружностям вращаются планеты. Область между ор
Слайд 13

Вселенная состоит из ряда концентрических хрустальных сфер, которые движутся с разными скоростями и приводятся в движение крайней сферой неподвижных звезд; в центре Вселенной расположена шарообразная неподвижная Земля, вокруг которой по концентрическим окружностям вращаются планеты.

Область между орбитой Луны и центром Земли (так называемый подлунный мир) является областью беспорядочных неравномерных движений, а все тела в ней состоят из четырех низших элементов: земли, воды, воздуха и огня. Земля, как самый тяжелый элемент, занимает центральное место, над ней последовательно размещаются оболочки воды, воздуха и огня. Область между орбитой Луны и крайней сферой неподвижных звезд (так называемый надлунный мир) является областью вечных равномерных движений, а сами звезды состоят из пятого элемента — эфира.

Эпикур (342/341-271/270 до н.э.). Последователь Демокрита и продолжатель его атомистического учения. В 307 г. до н.э. основал одну из наиболее влиятельных школ античности, известную в истории под названием «Сад Эпикура». Его главный труд — «0 природе» — содержал 37 книг. Сохранилось три письма Эпику
Слайд 14

Эпикур (342/341-271/270 до н.э.)

Последователь Демокрита и продолжатель его атомистического учения. В 307 г. до н.э. основал одну из наиболее влиятельных школ античности, известную в истории под названием «Сад Эпикура». Его главный труд — «0 природе» — содержал 37 книг. Сохранилось три письма Эпикура, излагающие основные положения его учения: Первое — «Эпикур приветствует Геродота» — содержит изложение атомистической физики Эпикура, включая учение о душе и ряд положений его учения о познании. Второе письмо — «Эпикур приветствует Пифокла» — излагает астрономические воззрения. Третье письмо — «Эпикур приветствует Менекея» — содержит основные положения этического учения.

ГАССЕНДИ Пьер (22. I .1592 – 24. X .1655). Пропагандировал античную атомистику, считал, что все существующее состоит из атомов, обладающих внутренним стремлением к движению, и пустоты, пространство бесконечно, несотворимо и неуничтожаемо.
Слайд 15

ГАССЕНДИ Пьер (22. I .1592 – 24. X .1655)

Пропагандировал античную атомистику, считал, что все существующее состоит из атомов, обладающих внутренним стремлением к движению, и пустоты, пространство бесконечно, несотворимо и неуничтожаемо.

В августе - 24 или 25 1624 г. французскими учеными в Париже был назначен публичный диспут с целью опровергнуть Аристотеля. Четырнадцатый тезис программы провозглашал атомистическую концепцию. В программе говорилось также, что Аристотель по невежеству или, что еще вероятнее, по недобросовестности выс
Слайд 16

В августе - 24 или 25 1624 г. французскими учеными в Париже был назначен публичный диспут с целью опровергнуть Аристотеля. Четырнадцатый тезис программы провозглашал атомистическую концепцию. В программе говорилось также, что Аристотель по невежеству или, что еще вероятнее, по недобросовестности высмеял учение, по которому материя состоит из атомов...

… в момент открытия диспута один из его устроителей, де Клав, был арестован, а другому Виллону, удалось скрыться. Парламент постановил: запретить диспут, торжественно и публично изорвать объявленные тезисы, всех зачинщиков этого дела выслать в 24 часа из Парижа с запрещением въезда в Парижский округ
Слайд 17

… в момент открытия диспута один из его устроителей, де Клав, был арестован, а другому Виллону, удалось скрыться. Парламент постановил: запретить диспут, торжественно и публично изорвать объявленные тезисы, всех зачинщиков этого дела выслать в 24 часа из Парижа с запрещением въезда в Парижский округ, запретить преподавание изложенных в тезисах взглядов … во всех французских университетах. … всякому, кто устно или печатно осмелился бы выступить с такой полемикой, грозила смертная казнь. Ю. Чирков. Охота за кварками, стр. 10-11.

Основные этапы развития атомно-молекулярной гипотезы. Возникновение идеи о прерывистом строении материи. Атоме. Левкипп, Демокрит ( V - IV в. до н.э.) Понятие химического элемента Р. Бойль (1661) Введение понятия атомного веса Дж.Дальтон (1803) Постулирование существования ионов. М.Фарадей (1834) Эк
Слайд 18

Основные этапы развития атомно-молекулярной гипотезы

Возникновение идеи о прерывистом строении материи. Атоме. Левкипп, Демокрит ( V - IV в. до н.э.) Понятие химического элемента Р. Бойль (1661) Введение понятия атомного веса Дж.Дальтон (1803) Постулирование существования ионов. М.Фарадей (1834) Экспериментальное доказательство существования ионов. И. Гитторф (1853)

Разработка молекулярно гипотезы строения вещества. А.Авогадро (1811) Открытие хаотического движения мелких частиц, взвешенных в растворе. Р.Броун (1827) Доказательство тепловой природы Броуновского движения. Л. Гюи (1888) Объяснение броуновского движения А. Эйнштейн, М. Смолуховский (1905 – 06) Эксп
Слайд 19

Разработка молекулярно гипотезы строения вещества. А.Авогадро (1811) Открытие хаотического движения мелких частиц, взвешенных в растворе. Р.Броун (1827) Доказательство тепловой природы Броуновского движения. Л. Гюи (1888) Объяснение броуновского движения А. Эйнштейн, М. Смолуховский (1905 – 06) Экспериментальное изучение броуновского движения и подтверждение его теории Ф. Перрен (1908) Непосредственное измерение скорости молекул О. Штерн (1920)

Открытие периодического закона химических элементов. Д.И.Менделеев, Л.Мейер (1869) Электрон (открытие) Дж. Дж. Томсон (1897) Гипотеза об электронном составе атома Дж. Дж. Томсон (1897) Эксперименты по рассеянию α -частиц в тонких металлических пленках Г. Гейгер, Э.Марсден (1909 -10) Теория рассеяния
Слайд 20

Открытие периодического закона химических элементов. Д.И.Менделеев, Л.Мейер (1869) Электрон (открытие) Дж. Дж. Томсон (1897) Гипотеза об электронном составе атома Дж. Дж. Томсон (1897) Эксперименты по рассеянию α -частиц в тонких металлических пленках Г. Гейгер, Э.Марсден (1909 -10) Теория рассеяния α -частиц в веществе Э. Резерфорд (1911)

Наличие дискретных уровней энергии электронов в атомах Дж. Франк, Г. Герц (1912 -14) Положение о том, что заряд ядра атома численно равен порядковому номеру элемента в периодической таблице А. Ван ден Брук (1913) Экспериментальное доказательство равенства заряда ядра атома порядковому номеру элемент
Слайд 21

Наличие дискретных уровней энергии электронов в атомах Дж. Франк, Г. Герц (1912 -14) Положение о том, что заряд ядра атома численно равен порядковому номеру элемента в периодической таблице А. Ван ден Брук (1913) Экспериментальное доказательство равенства заряда ядра атома порядковому номеру элемента в периодической таблице Г. Мозли (1913 -14) Объяснение периодической таблицы Н. Бор (1921 -22)

Гипотеза о планетарной модели атома Ф. Перрен (1901) Модель атома Томсона Дж. Дж. Томсон (1903) Первая попытка построения квантовой модели атома А. Гааз (1910) Планетарная модель атома Э. Резерфорд (1911) Идеи квантования применительно к планетарной модели атома Н.Бор (1913) Главное квантовое число
Слайд 22

Гипотеза о планетарной модели атома Ф. Перрен (1901) Модель атома Томсона Дж. Дж. Томсон (1903) Первая попытка построения квантовой модели атома А. Гааз (1910) Планетарная модель атома Э. Резерфорд (1911) Идеи квантования применительно к планетарной модели атома Н.Бор (1913) Главное квантовое число Н.Бор (1913) Квантование магнитных моментов атомов. О.Штерн, В.Герлах (1922) Распространение теории Бора на многократно периодические системы А. Зоммерфельд (1915 -16) Радиальное и азимутальное квантовые числа А. Зоммерфельд (1915 -16) Принцип Паули. В.Паули (1924-1925)

Открытие атомного ядра Э. Резерфорд (1911) Термин «атомное ядро» Э. Резерфорд (1912) Понятие «дефект массы» П. Ланжевен (1913) Протонно-нейтронная модель ядра. Д.Д.Иваненко, В.Гейзенберг (1932) Свойство насыщения ядерных сил. В.Гейзенберг (1932) Э.Майорана (1933) Свойство зарядовой независимости яде
Слайд 23

Открытие атомного ядра Э. Резерфорд (1911) Термин «атомное ядро» Э. Резерфорд (1912) Понятие «дефект массы» П. Ланжевен (1913) Протонно-нейтронная модель ядра. Д.Д.Иваненко, В.Гейзенберг (1932) Свойство насыщения ядерных сил. В.Гейзенберг (1932) Э.Майорана (1933) Свойство зарядовой независимости ядерных сил. Г.Брейт, Э.Кондон, Н.Кеммер, Р.Презент (1936)

Теория ядерных сил. Х.Юкава (1935) Формула энергии связи ядер. К.Вейцзеккер (1935) Теория составного ядра. Н.Бор (1936) Капельная модель ядра. Н.Бор, Я.И.Френкель (1936) Ядерно-магнитный резонанс. Ф.Блох, У.Хансон, Э.Парселл, Р.Паунд (1946) Коллективная модель ядра. О.Бор, Б.Моттельсон, Дж.Рейнуотер
Слайд 24

Теория ядерных сил. Х.Юкава (1935) Формула энергии связи ядер. К.Вейцзеккер (1935) Теория составного ядра. Н.Бор (1936) Капельная модель ядра. Н.Бор, Я.И.Френкель (1936) Ядерно-магнитный резонанс. Ф.Блох, У.Хансон, Э.Парселл, Р.Паунд (1946) Коллективная модель ядра. О.Бор, Б.Моттельсон, Дж.Рейнуотер (1950) Синтез антиядра Л.Ледерман (1965) Синтез ядер антигелия-3 Ю.Д.Прокошкин (1970)

Список похожих презентаций

Развитие атомно-молекулярной гипотезы

Развитие атомно-молекулярной гипотезы

Основные этапы развития атомно-молекулярной гипотезы. Возникновение идеи о прерывистом строении материи. Атоме. Левкипп, Демокрит ( V - IV в. до н.э.) ...
Развитие энергетики России

Развитие энергетики России

Новые вызовы для российской энергетики. Вызов 1. Необходимость изменения взаимоотношений государства и бизнеса Вызов 2. Необходимость изменения налоговой ...
Развитие энергетики республики Башкортостан

Развитие энергетики республики Башкортостан

Введение. Электрическими генераторами называются машины, преобразующие механическую энергию в электрическую. Принцип действия генератора основан на ...
Развитие учебно-познавательного интереса к физике средствами разноуровневого обучения

Развитие учебно-познавательного интереса к физике средствами разноуровневого обучения

Развитие учебно-познавательного интереса к физике средствами разноуровневого обучения. Главной целью педагогической деятельности считаю создание условий ...
Развитие универсальных учебных действий у учащихся на уроке физики по теме «Давление газа» в 7 классе

Развитие универсальных учебных действий у учащихся на уроке физики по теме «Давление газа» в 7 классе

Цель проекта: На основе изучения нормативных документов, учебно-методической литературы составить конструкт урока по теме «Давление газа» в 7 классе ...
Развитие теории атомизма

Развитие теории атомизма

«Выслушай то, что скажу, и ты сам, несомненно, признаешь, Что существуют тела, которых мы видеть не можем……..». КАР ЛУКРЕЦИЙ. ДЕМОКРИТ. Путем размышлений ...
Развитие средств связи

Развитие средств связи

Не прекрасна ли цель работать, чтобы оставить людей после себя более счастливыми, чем были мы? Монтескье. Цель урока. обобщить и систематизировать ...
Развитие средств связи

Развитие средств связи

Этапы развития средств связи. Английский ученый Джеймс Максвелл в 1864 году теоретически предсказал существование электромагнитных волн. 1887 году ...
Развитие средств связи

Развитие средств связи

Развитие средст связи. Мы живем в удивительное время. Атомные электростанции и атомоходы, космические корабли и синхрофазотроны, луч лазера и сверхзвуковые ...
Развитие радио и телевидения

Развитие радио и телевидения

В декабре 1821 года. в своем дневнике Майкл Фарадей записывает задачу: «превратить магнетизм в электричество». За 10 лет напряженного труда он осуществил ...
Развитие познавательной активности учащихся на уроках физики

Развитие познавательной активности учащихся на уроках физики

Проблема развития познавательной активности учащихся на всех этапах развития образования была одной из актуальных, т. к. активность является необходимым ...
Развитие двигателей внутреннего сгорания

Развитие двигателей внутреннего сгорания

Цели проекта: изучить историю создания и развития двигателей внутреннего сгорания; рассмотреть различные типы ДВС; изучить сферы применения различных ...
Развитие взглядов на природу света

Развитие взглядов на природу света

Первые представления о свете. Первые представления о том, что такое свет, относятся также к древности. В древности представления о природе света были ...
Развитие блоков управления дизельных двигателей

Развитие блоков управления дизельных двигателей

TDI-двигатель. Впускной канал Завихрение поступающего воздушного потока поршень Форма поверхности поршня специально оптимизирована для этого двигателя. ...
Развитие атомной энергетики

Развитие атомной энергетики

1. Мировой опыт развития атомной энергетики. Сегодня 1,7 млрд. человек не имеют доступа к электроэнергии. Мировые проблемы. Рост энергопотребления. ...
Развитие ядерной энергетики

Развитие ядерной энергетики

Содержание. Ядерная энергетика ЯЭ используется Ядерный реактор Экономическое значение ЯЭ ядерные реакции Атомная электростанция Использование ядерной ...
Развитие авиации в России

Развитие авиации в России

«Соединяя Регионы…». Предпосылки. Исследования. График спроса на инфраструктуру в России в 2005-2019 гг. Предпосылки. Исследования. Средняя стоимость ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...

Конспекты

Реактивное движение. Развитие ракетной техники

Реактивное движение. Развитие ракетной техники

Конспект урока по физике на тему. . «Реактивное движение. Развитие ракетной техники». Цель урока: раскрыть учащимся прикладное значение закона ...
Развитие современных средств связи в Казахстане

Развитие современных средств связи в Казахстане

Урок № 17 11 класс Дата_______. Тема урока:. Развитие современных средств связи в Казахстане. Цифровые технологии. Оптово-волоконные коммуникационные ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 мая 2019
Категория:Физика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации