- Свойства жидкостей

Презентация "Свойства жидкостей" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28

Презентацию на тему "Свойства жидкостей" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 28 слайд(ов).

Слайды презентации

Свойства жидкостей. Поверхностное натяжение. Урок в 10 классе
Слайд 1

Свойства жидкостей. Поверхностное натяжение

Урок в 10 классе

1. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. 2. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают боль
Слайд 2

1. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. 2. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. 3. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия.

4. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах , и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкост
Слайд 3

4. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах , и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. 5. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (рис. 1).

Рисунок 1. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед.
Слайд 4

Рисунок 1. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед.

Рис. 2 иллюстрирует отличие газообразного вещества от жидкости на примере воды. Молекула воды H2O состоит из одного атома кислорода и двух атомов водорода, расположенных под углом 104°. Среднее расстояние между молекулами пара в десятки раз превышает среднее расстояние между молекулами воды. В отлич
Слайд 5

Рис. 2 иллюстрирует отличие газообразного вещества от жидкости на примере воды. Молекула воды H2O состоит из одного атома кислорода и двух атомов водорода, расположенных под углом 104°. Среднее расстояние между молекулами пара в десятки раз превышает среднее расстояние между молекулами воды. В отличие от рис. 1, где молекулы воды изображены в виде шариков, рис. 2 дает представление о структуре молекулы воды.

Рисунок 2. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10(7) раз.

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.
Слайд 6

Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах.

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой ж
Слайд 7

Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместиться с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу.

Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности: ΔA внеш = σΔS.
Слайд 8

Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), надо затратить положительную работу внешних сил ΔA внеш, пропорциональную изменению ΔS площади поверхности: ΔA внеш = σΔS.

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу. В СИ коэффициент поверхностного натяжения измеряется в джоулях
Слайд 9

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м2) или в ньютонах на метр (1 Н/м = 1 Дж/м2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади: Ep = Aвнеш = σS.
Слайд 10

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Потенциальная энергия Ep поверхности жидкости пропорциональна ее площади:

Ep = Aвнеш = σS.

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, к
Слайд 11

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения.

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидко
Слайд 12

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Сечение сферической капли жидкости.

Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкост
Слайд 13

Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела.

В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом. Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой
Слайд 14

В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом. Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис. 4). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. При полном смачивании θ = 0, при полном несмачивании θ = 180°.

Рисунок 4 Краевые углы смачивающей (1) и несмачивающей (2) жидкостей.
Слайд 15

Рисунок 4 Краевые углы смачивающей (1) и несмачивающей (2) жидкостей.

Капиллярные явления. Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.
Слайд 16

Капиллярные явления

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

Рисунок 5 Подъем смачивающей жидкости в капилляре.
Слайд 17

Рисунок 5 Подъем смачивающей жидкости в капилляре.

На рис. 5 изображена капиллярная трубка некоторого радиуса r, опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю резул
Слайд 18

На рис. 5 изображена капиллярная трубка некоторого радиуса r, опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей Fн сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: Fт = Fн, где Fт = mg = ρhπr2g, Fн = σ2πr cos θ.

Отсюда следует:
Слайд 19

Отсюда следует:

При полном смачивании θ = 0, cos θ = 1. В этом случае: При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h
Слайд 20

При полном смачивании θ = 0, cos θ = 1. В этом случае:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.
Слайд 21

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

Явление смачивания - несмачивания. Мы привыкли, что чернила хорошо впитываются в бумагу, нас не удивляет, что вода хорошо пропитывает ткань. Так происходит потому, что эти жидкости хорошо смачивают большинство предметов. Но вода, к примеру, не смачивает жирные поверхности. Ртуть же, в противоположно
Слайд 22

Явление смачивания - несмачивания.

Мы привыкли, что чернила хорошо впитываются в бумагу, нас не удивляет, что вода хорошо пропитывает ткань. Так происходит потому, что эти жидкости хорошо смачивают большинство предметов. Но вода, к примеру, не смачивает жирные поверхности. Ртуть же, в противоположность воде, совсем не смачивает стекло. Она собирается на его поверхности в виде капелек, в то время когда вода растекается тонким слоем. В чем причина явления смачивания?

Тот факт, что вода стремится занять как можно бо'льшую площадь поверхности стекла, свидетельствует о более сильном притяжении молекул воды к молекулам стекла, чем молекул воды друг к кдругу. В случае со ртутью все наоборот: ее молекулы друг к другу притягиваются сильнее, чем к молекулам стекла. Ртут
Слайд 23

Тот факт, что вода стремится занять как можно бо'льшую площадь поверхности стекла, свидетельствует о более сильном притяжении молекул воды к молекулам стекла, чем молекул воды друг к кдругу. В случае со ртутью все наоборот: ее молекулы друг к другу притягиваются сильнее, чем к молекулам стекла. Ртуть потому и собирается в каплю, что в этом случае все ее молекулы находятся как можно ближе друг к другу.

Итак, явление смачивания-несмачивания объясняется различным взаимодействием молекул тела и жидкости. Если молекулы жидкости притягиваются к телу сильнее, чем друг к другу, то такая жидкость смачивает тело. Если же молекулы жидкости притягиваются друг к другу сильнее, чем к телу, то жидкость не будет
Слайд 24

Итак, явление смачивания-несмачивания объясняется различным взаимодействием молекул тела и жидкости. Если молекулы жидкости притягиваются к телу сильнее, чем друг к другу, то такая жидкость смачивает тело. Если же молекулы жидкости притягиваются друг к другу сильнее, чем к телу, то жидкость не будет смачивать данное тело.

Явление смачивания-несмачивания часто встречается в природе и быту. Например, водоплавающие птицы смазывают перья жиром, выделяющимся из специальных желез (внутренних органов птицы). Вода не смачивает жир и, поэтому, перья остаются сухими даже при нырянии (пословица "как с гуся вода"). Бла
Слайд 25

Явление смачивания-несмачивания часто встречается в природе и быту. Например, водоплавающие птицы смазывают перья жиром, выделяющимся из специальных желез (внутренних органов птицы). Вода не смачивает жир и, поэтому, перья остаются сухими даже при нырянии (пословица "как с гуся вода"). Благодаря явлению смачивания мы можем вытираться полотенцами, мыть посуду, стирать белье. Благодаря явлению несмачивания мы можем ходить под зонтами и в плащах, не промокающих под дождем.

С явлением смачивания-несмачивания очень тесно связано явление капиллярности. Познакомимся с ним на опыте. Если стеклянную трубку опустить в чашу с водой, то внутри трубки вода поднимется на некоторую высоту (левый рисунок). Ртуть, напротив, опустится ниже уровня в чаше (правый рисунок). Это явление
Слайд 26

С явлением смачивания-несмачивания очень тесно связано явление капиллярности. Познакомимся с ним на опыте. Если стеклянную трубку опустить в чашу с водой, то внутри трубки вода поднимется на некоторую высоту (левый рисунок). Ртуть, напротив, опустится ниже уровня в чаше (правый рисунок). Это явление подъема или опускания уровня жидкости в тонких трубках по сравнению с уровнем жидкости в широком сосуде называется явлением капиллярности, а трубки для наблюдения этого явления – капиллярами (греч. "капиллус" – волос).

Из рассмотренных примеров нетрудно заметить, что жидкости, смачивающие материал, из которого сделан капилляр, будут в нем подниматься (вода и стекло). И наоборот: жидкости, не смачивающие капилляр, будут в нем опускаться (стекло и ртуть). Кроме того, высота подъема (опускания) жидкости зависит от то
Слайд 27

Из рассмотренных примеров нетрудно заметить, что жидкости, смачивающие материал, из которого сделан капилляр, будут в нем подниматься (вода и стекло). И наоборот: жидкости, не смачивающие капилляр, будут в нем опускаться (стекло и ртуть). Кроме того, высота подъема (опускания) жидкости зависит от толщины трубки: чем тоньше капилляр, тем больше высота поднятия (опускания) жидкости.

Объясним явление капиллярности. Рассмотрим следующий опыт. В сосуд с водой опустим две стеклянные пластинки. Поскольку стекло смачивается водой, то вблизи поверхности пластинок водная поверхность в сосуде искривится. Вода как бы "прильнет" к стеклам, пытаясь "всползти" по ним вве
Слайд 28

Объясним явление капиллярности. Рассмотрим следующий опыт. В сосуд с водой опустим две стеклянные пластинки. Поскольку стекло смачивается водой, то вблизи поверхности пластинок водная поверхность в сосуде искривится. Вода как бы "прильнет" к стеклам, пытаясь "всползти" по ним вверх (рис. 1). Вы видите, что искривление водной поверхности происходит как на внешней, так и на внутренней стороне пластинок. Приближая стекла друг к другу (см. рисунки 2, 3), мы сблизим искривившиеся водные поверхности, и нижние их части сомкнутся уже выше уровня воды в сосуде (см. рисунки 3, 4). Получается, что мы сконструировали "действующую модель" капилляра.

Список похожих презентаций

Свойства жидкостей, газов и твердых тел в пословицах

Свойства жидкостей, газов и твердых тел в пословицах

Из чего состоят окружающие нас предметы? «Из молекул и атомов»,-без запинки ответит сейчас каждый школьник. Это представляется нам сейчас очевидной ...
Свойства жидкостей.Смачивание. Капилярные явления

Свойства жидкостей.Смачивание. Капилярные явления

Тема: «Свойства жидкостей.Смачивание. Капилярные явления.». Строение жидкостей. 1 – вода; 2 – лед. Чем отличаются газообразные тела от жидких? 1 - ...
Свойства жидкости

Свойства жидкости

Список литературы. Альтшуль А.Д., Киселев П.Г. «Гидравлика и аэродинамика» – М.: Стройиздат, 1975 – 328с. Башта Т.М., Руднев С.С. и другие «Гидравлика, ...
Свойства электромагнитных излучений

Свойства электромагнитных излучений

Инфракрасное излучение – это электромагнитные волны, которые испускает любое нагретое тело, даже если оно не светится. Инфракрасные волны также тепловые ...
Давление жидкостей и газов.

Давление жидкостей и газов.

Почему в обычных земных условиях в жидкостях и газах всегда есть давление? Проанализируем опыт:. Почему давление неодинаково на разной глубине? Все ...
Свойства света

Свойства света

Где конец у света? Гипотеза. Благодаря солнечным и лунным затмениям нам известно, что свет распространяется прямолинейно, но тем не менее свет проникает ...
Свойства электромагнитных волн

Свойства электромагнитных волн

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды. Электромагнитные ...
Свойства зрения

Свойства зрения

Строение глаза Свойства глаза Дефекты зрения Оптические обманы Зрение у животных. Строение глаза. По форме глаз – шар диаметром 2,5 см и массой около ...
Свойства поверхности жидкости

Свойства поверхности жидкости

Цели:. Познавательная: познакомить учащихся со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; ...
Поверхностное натяжение жидкостей

Поверхностное натяжение жидкостей

Изучение свойств жидкостей очень важно для человека. Поверхностное натяжение-явление вызванное притяжением молекул поверхностного слоя к молекулам ...
Расходомер счетчик жидкостей ультразквуковой

Расходомер счетчик жидкостей ультразквуковой

Назначение и технические характеристики расходомера-счетчика жидкости ультразвукового US800. US800 измеряет расход и объём жидкостей, свойства и течение ...
Давление твёрдых тел, жидкостей и газов

Давление твёрдых тел, жидкостей и газов

...Для того, чтобы усовершенствовать ум, надо больше размышлять, чем заучивать.                                                  Р.Декарт. Почему ...
Жидкое состояние вещества. Свойства поверхности жидкости

Жидкое состояние вещества. Свойства поверхности жидкости

Цель урока:. познакомится со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; совершенствовать ...
Давление твердых тел, жидкостей и газов

Давление твердых тел, жидкостей и газов

Науку всё глубже постигнуть стремись, Познанием вечного жаждой томись. Лишь первых познаний блеснет тебе свет, Узнаешь: предела для знания нет. Фирдоуси, ...
Давление твёрдых тел, жидкостей и газов

Давление твёрдых тел, жидкостей и газов

Проверим домашнее задание. Будет ли действовать выталкивающая сила на тело, погруженное в жидкость, в состоянии невесомости? Ответ обоснуйте. Попробуйте ...
Давление твердых тел , жидкостей , газов, закон Архимеда

Давление твердых тел , жидкостей , газов, закон Архимеда

Физические величины. Давление-это…. Давление: p=F/S; Па. Давление жидкостей. . Атмосфера. Азот-78% Кислород-21% Аргон-0,93% Углекислый газ-0,03%. ...
Свойства звука

Свойства звука

ТЕМА УРОКА: «ЗВУКИ В ПРИРОДЕ, МУЗЫКЕ, ТЕХНИКЕ». А Вы ноктюрн сыграть смогли бы На флейте водосточных труб? В. Маяковский. План урока:. 1. Повторение ...
Свойства веществ

Свойства веществ

Свойства газов. Характерные свойства газов (способность расширяться, занимая весь свободный объем; способность сильно сжиматься; способность двух ...
Свойства звуковой волны

Свойства звуковой волны

Первое свойство:. Распространение в среде с конечной скоростью. Скорость звука зависит: а) плотности среды, б) температуры среды. Скорость звука: ...
Свойства воды

Свойства воды

Название воды произошло еще с незапамятных времен и с того времени водой называют любую «живую» влагу, которая так необходима для жизни людей, животных ...

Конспекты

Свойства жидкостей, газов и твердых тел

Свойства жидкостей, газов и твердых тел

Тема. : Свойства жидкостей, газов и твердых тел. Тип урока:. урок-конференция. Цели урока:. . Обучающие:. проверить уровень усвоения вопросов ...
Свойства твёрдых тел, жидкостей и газов

Свойства твёрдых тел, жидкостей и газов

Тема: Свойства твёрдых тел, жидкостей и газов. Цель: Закрепить знания о состояниях тел. Задачи:. . Рассмотреть свойства твёрдых тел, жидкостей ...
Три состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов

Три состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов

МОУ ПАДОВСКАЯ средняя общеобразовательная школа. ПЕСТРАВСКОГО РАЙОНА САМАРСКОЙ ОБЛАСТИ. Урок по физике в 7 классе. Тема: «Три состояния ...
Три состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов

Три состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов

Три состояния вещества. Различие в молекулярном строении твердых тел, жидкостей и газов. Цель урока –.  . познакомить учащихся со свойствами твердых ...
Свойства звука

Свойства звука

. Тема: Свойства звука. . 11 класс. . . . Тип урока:. комбинированный. Цель:. 1. Сформировать понятие громкости, высоты, тембра звука ...
Давление твёрдых тел, жидкостей и газов

Давление твёрдых тел, жидкостей и газов

ТЕМА: «Давление твёрдых тел, жидкостей и газов». Учитель: Цымбал Людмила Юрьевна. декабрь 2012 года. Урок физики в 7 классе. Обобщающий ...
Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

15.01.2015. Тема : « Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения ...
Давление твёрдых тел, жидкостей и газов

Давление твёрдых тел, жидкостей и газов

Гаврилова Светлана Владимировна. учитель физики. МКОУ СОШ с. Владимиро-Александровское. Приморский край, Партизанский район. 7 класс. Тема ...
Давление твердых тел, жидкостей и газов

Давление твердых тел, жидкостей и газов

ПЛАН-КОНСПЕКТ УРОКА Давление. ФИО :. Слободина Елена Аркадьевна. . Место работы:. МОУ СОШ №14 города Слободского Кировской области. . ...
Давление твердых тел, жидкостей и газов

Давление твердых тел, жидкостей и газов

Осипова Г.Н. 215-907-382. Тема урока: Решение задач по теме «Давление твердых тел, жидкостей и газов». (7 класс). . . Тип урока:. урок применения ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:10 сентября 2018
Категория:Физика
Содержит:28 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации