- Свойства дефектов и их ансамблей в конденсированных средах

Презентация "Свойства дефектов и их ансамблей в конденсированных средах" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34

Презентацию на тему "Свойства дефектов и их ансамблей в конденсированных средах" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 34 слайд(ов).

Слайды презентации

СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела
Слайд 1

СВОЙСТВА ДЕФЕКТОВ И ИХ АНСАМБЛЕЙ В КОНДЕНСИРОВАННЫХ СРЕДАХ Радиационная физика твердого тела

Содержание. Раздел 1 Виды отдельных элементарных дефектов и их свойства. Дефекты в простых веществах 1.1.Классификация дефектов простых веществ 1.1.1.Междоузлие 1.1.2.Вакансии в ковалентных соединениях 1.1.3. Характеристики точечных дефектов 1.1.4. Междоузлия в простых веществах и их характеристики
Слайд 2

Содержание

Раздел 1 Виды отдельных элементарных дефектов и их свойства. Дефекты в простых веществах 1.1.Классификация дефектов простых веществ 1.1.1.Междоузлие 1.1.2.Вакансии в ковалентных соединениях 1.1.3. Характеристики точечных дефектов 1.1.4. Междоузлия в простых веществах и их характеристики 1.1.5. Дефекты упаковки 1.1.6. Неупорядоченные сплавы. Примесные дефекты 1.1.7. Упорядоченные сплавы. Типы решеток с упорядочением 1.2.Равновесные и неравновесные дефекты 1.2.1.Равновесная концентрация точечных дефектов в простых веществах 1.3. Дефекты упорядочивающихся сплавов 1.3.1.Метрика дальнего порядка в упорядочивающихся сплавах 1.3.2.Метрика ближнего порядка в упорядочивающихся сплавах. Связь дальнего порядка и среднего значения ближнего порядка в упорядочивающихся сплавах 1.3.3.Температурная зависимость концентрация равновесных дефектов замещения в упорядочивающихся сплавах 1.3.4. Температурная зависимость концентрация равновесных вакансий в упорядочивающихся сплавах

Раздел 2. Описание дефектов кристаллической структуры в рамках теории упругости 2.1. Основные положения механики сплошной среды 2.1.1. Определения 2.1.2. Закон Гука 2.1.3. Закон Гука в обобщенном виде 2.1.4.Общий вид уравнений в абсолютных смещениях 2.2. Смещение атомов в кристаллической решетке с т
Слайд 3

Раздел 2. Описание дефектов кристаллической структуры в рамках теории упругости 2.1. Основные положения механики сплошной среды 2.1.1. Определения 2.1.2. Закон Гука 2.1.3. Закон Гука в обобщенном виде 2.1.4.Общий вид уравнений в абсолютных смещениях 2.2. Смещение атомов в кристаллической решетке с точечными дефектами. Изменение объема 2.3. Поведение дефекта во внешнем поле смещения 2.4. Плотность внутренних сил, эквивалентных центру дилатации 2.5. Взаимодействие дефектов с внешним упругим полем 2.6. Упругое взаимодействие точечных дефектов 2.7. Непрерывное распределение точечных дефектов в упругом поле 2.8. Течение кристалла. Ползучесть 2.9. Кинетика пор в кристалле 2.10. Неустойчивость однородного распределения точечных дефектов 2.11. Дислокации 2.12. Пластическая деформация кристаллов 2.13. Одномерная модель дислокации – модель Френкеля–Конторовой

Раздел 3. Радиационные дефекты 3.1. Методы создания радиационных дефектов 3.1.1. Облучение в реакторе 3.1.2. Облучение на ускорителях тяжелых ионов 3.1.3. Облучение в высоковольтном электронном микроскопе 3.1.4. Основные преимущества и недостатки экспрессивных методов радиационного испытания 3.2. Пе
Слайд 4

Раздел 3. Радиационные дефекты 3.1. Методы создания радиационных дефектов 3.1.1. Облучение в реакторе 3.1.2. Облучение на ускорителях тяжелых ионов 3.1.3. Облучение в высоковольтном электронном микроскопе 3.1.4. Основные преимущества и недостатки экспрессивных методов радиационного испытания 3.2. Первичные процессы взаимодействия частиц и излучений с твердым телом 3.2.1. Общие представления о процессах взаимодействия частиц с твердым телом 3.2.2. Взаимодействие нейтронов с веществом 3.2.3. Взаимодействие ускоренных ионов с веществом 3.2.4. Распределение по глубине проникновения внедренных ионов и дефектов, созданных ионами 3.2.5. Взаимодействие электронов с веществом 3.2.6. Взаимодействие  - квантов с веществом 3.3. Основные условия воспроизводимости явлений реакторного повреждения при облучении на ускорителе

Раздел 4. Теоретическое сравнение структуры случайных полей радиационных дефектов, образующихся при облучении быстрыми частицами в пленочных образцах 4.1. Каскад атомных столкновений. Индивидуальные характеристики 4.2. Случайное поле дефектов. Статистика повреждений 4.3. Модель разреженных каскадов
Слайд 5

Раздел 4. Теоретическое сравнение структуры случайных полей радиационных дефектов, образующихся при облучении быстрыми частицами в пленочных образцах 4.1. Каскад атомных столкновений. Индивидуальные характеристики 4.2. Случайное поле дефектов. Статистика повреждений 4.3. Модель разреженных каскадов 4.4. Модель плотных каскадов 4.5. Параметры имитации 4.6. Имитационные соотношения для модельных спектров ПВА 4.7. Методика определения временного ресурса сверхпроводящих соединений 4.8. Расчет характеристик поля повреждений при облучении тонких пленок ионами и нейтронами со спектром, близким к реальному спектру ТЯР

Введение. «Физика реального твердого тела» изучает физические явления и процессы, обусловленные или возникающие при высоком содержании дефектов в твердом теле, пытается выработать предсказательные теории, определяющие характеристики твердого тела. Все области применения и «вынужденного» использовани
Слайд 6

Введение

«Физика реального твердого тела» изучает физические явления и процессы, обусловленные или возникающие при высоком содержании дефектов в твердом теле, пытается выработать предсказательные теории, определяющие характеристики твердого тела. Все области применения и «вынужденного» использования твердого тела, так или иначе, определяются дефектами структуры. Простейшие примеры: проводимость идеального твердого тела равна нулю; критический ток в сверхпроводниках также равен нулю в отсутствии пиннинга системы вихрей на дефектах структуры. Важным направлением является контролируемое введение в матрицу примесей и дефектов, а также радиационно-стимулированное изменение структуры. Начало интенсивного развития этого направления соответствует появлению полупроводниковых приборов. Это направление можно назвать «Физической технологией» поскольку конструирование и создание новых приборов и инструментария исследователей определяется разработкой детальной физической картины процессов, интерпретации измеряемых величин. Естественное уменьшение размеров изучаемых объектов и новые измерительные возможности привели к появлению нового направления «Наносистемы». Контролируемое введение в матрицу примесей и дефектов представляет и физический интерес для анализа применимости тех или иных представлений физики конденсированных сред. Например, для анализа механизма сверхпроводимости в соединениях со структурой А15, ВТСП.

Ряд проблемных задач физики конденсированных систем имеет фундаментальный характер. Предсказание механических свойств реальных твердых тел, в том числе в интенсивных радиационных полях; Электрические свойства и явления в конденсированных системах с высоким содержанием дефектов; Механизмы сверхпровод
Слайд 7

Ряд проблемных задач физики конденсированных систем имеет фундаментальный характер

Предсказание механических свойств реальных твердых тел, в том числе в интенсивных радиационных полях; Электрические свойства и явления в конденсированных системах с высоким содержанием дефектов; Механизмы сверхпроводимости, в том числе – высокотемпературной, улучшение критических параметров сверхпроводников; Электронные и фотонные свойства органических полупроводников и кристаллов

ВИДЫ ОТДЕЛЬНЫХ ЭЛЕМЕНТАРНЫХ ДЕФЕКТОВ И ИХ СВОЙСТВА. ДЕФЕКТЫ В ПРОСТЫХ ВЕЩЕСТВАХ.
Слайд 8

ВИДЫ ОТДЕЛЬНЫХ ЭЛЕМЕНТАРНЫХ ДЕФЕКТОВ И ИХ СВОЙСТВА. ДЕФЕКТЫ В ПРОСТЫХ ВЕЩЕСТВАХ.

Классификация дефектов простых веществ. Определение: Любые нарушения или искажения в регулярности расположения атомов кристалла считают дефектом кристаллической решетки. Различают следующие виды отдельных дефектов: Тепловое движение атомов Междоузельные атомы и вакансии Примесные атомы Граница крист
Слайд 9

Классификация дефектов простых веществ.

Определение: Любые нарушения или искажения в регулярности расположения атомов кристалла считают дефектом кристаллической решетки. Различают следующие виды отдельных дефектов: Тепловое движение атомов Междоузельные атомы и вакансии Примесные атомы Граница кристалла Поликристаллы Дислокации Статические смещения решетки вблизи дефекта

1.Тепловое движение атомов. отклонение атомов от положения равновесия; это термодинамически-равновесный вид дефекта, имеющий динамический характер.
Слайд 10

1.Тепловое движение атомов

отклонение атомов от положения равновесия; это термодинамически-равновесный вид дефекта, имеющий динамический характер.

2.Междоузельные атомы и вакансии. Эти дефекты имеют тенденцию быть равновесными. Характерное время релаксации к равновесному состоянию может быть достаточно большим. Действительно, процесс диффузии дефектов, определяющий их распределение в твердом теле, является термоактивируемым процессом, поэтому
Слайд 11

2.Междоузельные атомы и вакансии.

Эти дефекты имеют тенденцию быть равновесными. Характерное время релаксации к равновесному состоянию может быть достаточно большим. Действительно, процесс диффузии дефектов, определяющий их распределение в твердом теле, является термоактивируемым процессом, поэтому при недостаточно больших температурах часто встречаются неравновесные состояния систем этих дефектов . Значительным отличием систем точечных дефектов является наличие их взаимодействия между собой (через атомы матрицы), что приводит, в частности, к образованию их комплексов (ансамблей), конденсата в матрице, т.е. равновесное состояние системы точечных дефектов в большинстве случаев является неоднородным в пространстве (например, вакансии - ансамбль вакансий – пора).

3. Атомы примесей. Примеси, даже при малой концентрации, могут существенно влиять на свойства кристалла, например, они вносят заметный вклад в проводимость полупроводников Плотность атомов в конденсированных системах 1022 - 1023 атомов/см3, концентрация дефектов в зависимости от предыстории получени
Слайд 12

3. Атомы примесей

Примеси, даже при малой концентрации, могут существенно влиять на свойства кристалла, например, они вносят заметный вклад в проводимость полупроводников Плотность атомов в конденсированных системах 1022 - 1023 атомов/см3, концентрация дефектов в зависимости от предыстории получения образца меняется от 1012 - 1020 атом/см3.

4. Граница кристалла. Этот дефект приводит к искажениям даже внутри матрицы и к нарушению кристаллической симметрии в областях примыкающих к границе. Картина зерен в поликристалле. 5. Поликристаллы. зерна или кристаллиты с разной ориентацией. Объем зерен больше физически представительного объема. По
Слайд 13

4. Граница кристалла

Этот дефект приводит к искажениям даже внутри матрицы и к нарушению кристаллической симметрии в областях примыкающих к границе.

Картина зерен в поликристалле

5. Поликристаллы

зерна или кристаллиты с разной ориентацией. Объем зерен больше физически представительного объема. Поперечный размер зерен порядка 10-3  10-6 см

Свойства поликристаллов обусловлены как самими кристаллическими зернами, так и межзёренными границами. Если зерна малы и ориентированы хаотично, то в поликристаллах не проявляется анизотропия свойств, свойственная, например, монокристаллу. Если есть определенная ориентация зерен, то поликристалл является текстурированным и обладает анизотропией.

Выход краевой дислокации на границу. Винтовая дислокация роста кристалла. Скопление дислокаций на межзеренных границах. Сетка дислокаций. Винтовая дислокация. 5. Дислокации – неравновесный тип дефекта, т.е. их появление обусловлено предысторией образца и связано либо ростом кристаллита, либо действи
Слайд 14

Выход краевой дислокации на границу

Винтовая дислокация роста кристалла.

Скопление дислокаций на межзеренных границах

Сетка дислокаций

Винтовая дислокация

5. Дислокации – неравновесный тип дефекта, т.е. их появление обусловлено предысторией образца и связано либо ростом кристаллита, либо действием внешних нагрузок или воздействий. Различают несколько типов дислокаций: краевые, винтовые, смешанные. Их скопления часто формируют межзеренные границы.

В зависимости от размерности различают следующие типы дефектов: 1. Точечные дефекты: Междоузельные атомы и вакансии, Примесные атомы 2. Линейные дефекты :Дислокации 3. Плоские дефекты: Граница кристалла, Поликристаллы Феноменологические характеристики точечных дефектов: - энергия образования; - энер
Слайд 15

В зависимости от размерности различают следующие типы дефектов: 1. Точечные дефекты: Междоузельные атомы и вакансии, Примесные атомы 2. Линейные дефекты :Дислокации 3. Плоские дефекты: Граница кристалла, Поликристаллы Феноменологические характеристики точечных дефектов: - энергия образования; - энергия миграции; - дилатационный объём.

В идеальной структуре какого-либо типа, атом занимает положение, соответствующее узлу решетки. Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение. Таких положений может быть для структуры несколько. Различные виды междоузельных атомов углерода в решетке алмаза: а –
Слайд 16

В идеальной структуре какого-либо типа, атом занимает положение, соответствующее узлу решетки. Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение. Таких положений может быть для структуры несколько. Различные виды междоузельных атомов углерода в решетке алмаза: а – Тетраэдрическое – T; б – Гексагональное –H; в – междоузлие посредине связи – M; г – Расщепленное междоузлие (гантель - <100>).

Междоузлие

Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение и возмущает распределение электронной плотности внутри элементарной ячейки. Собственное междоузлие в алмазе. Распределение электронной плотности в элементарной ячейке алмаза и в ячейке содержащей тетраэдрическое ме
Слайд 17

Лишний атом, для которого нет соответствующего узла, занимает междоузельное положение и возмущает распределение электронной плотности внутри элементарной ячейки

Собственное междоузлие в алмазе

Распределение электронной плотности в элементарной ячейке алмаза и в ячейке содержащей тетраэдрическое междоузельный атом углерода. Уровень изображенных изоповерхностей один и тот же =1.25

Вакансии в ковалентных соединениях. Отсутствие атома в узле решетки создает точечный дефект типа вакансии: Конфигурация вакансии и дивакансии в алмазе Картина смещений отличается от смещений для междоузельных атомов направлением, обычно ближайшее окружение смещается к пустому узлу. В соединениях ион
Слайд 18

Вакансии в ковалентных соединениях

Отсутствие атома в узле решетки создает точечный дефект типа вакансии: Конфигурация вакансии и дивакансии в алмазе Картина смещений отличается от смещений для междоузельных атомов направлением, обычно ближайшее окружение смещается к пустому узлу. В соединениях ионного типа вакансии образуются парами, что является энергетически более выгодной конфигурацией для данной структуры (дефект Шоттки). Сказывается необходимость соблюдения нейтральности. Такой тип дефектов проявляются тем выгоднее, чем выше ионность связи, например в NaCl. Отметим также, что в ВТСП типа YBa2Cu3O7 связь наблюдается частично ионной связи.

Атома нет в соответствующем узле, что приводит к возмущению распределение электронной плотности внутри элементарной ячейки. Одиночная вакансия в алмазе. Распределение электронной плотности в идеальной элементарной ячейке алмаза и в ячейке содержащей одиночную вакансию. Уровень изображенных изоповерх
Слайд 19

Атома нет в соответствующем узле, что приводит к возмущению распределение электронной плотности внутри элементарной ячейки

Одиночная вакансия в алмазе

Распределение электронной плотности в идеальной элементарной ячейке алмаза и в ячейке содержащей одиночную вакансию. Уровень изображенных изоповерхностей один и тот же =1.25

Свойства дефектов и их ансамблей в конденсированных средах Слайд: 20
Слайд 20
Модель образования вакансии в простых веществах. Можно предложить следующий механизм образования вакансии. Атом выносится на границу кристалла, при этом число частиц в системе не изменяется. Действительно, простое удаление атома из узла решетки кристалла на бесконечность изменяет число частиц в сист
Слайд 21

Модель образования вакансии в простых веществах

Можно предложить следующий механизм образования вакансии. Атом выносится на границу кристалла, при этом число частиц в системе не изменяется. Действительно, простое удаление атома из узла решетки кристалла на бесконечность изменяет число частиц в системе и для расчета термодинамического потенциала системы потребуется учитывать этот факт. В окрестности образовавшейся вакансии будет происходить релаксация атомов (красные стрелки на рисунке). Будем считать, что два атома вещества взаимодействуют друг с другом посредством парного потенциала взаимодействия, который не зависит от окружения атомов.

Энергия атома, находящегося в узле кристалла, равна Eузл=z1*φ(R*), где число ближайших соседей порядка z1  6 - 8, R*– равновесное межатомное расстояние, оценка потенциала φ(R*) может быть сделана, например, из энергии сублимации вещества, что дает φ(R*) ≈ 0.2 ÷ 0.3eV. Таким образом, величина энерги
Слайд 22

Энергия атома, находящегося в узле кристалла, равна Eузл=z1*φ(R*), где число ближайших соседей порядка z1  6 - 8, R*– равновесное межатомное расстояние, оценка потенциала φ(R*) может быть сделана, например, из энергии сублимации вещества, что дает φ(R*) ≈ 0.2 ÷ 0.3eV. Таким образом, величина энергии атома в узле решетки равна Eузл~ 1.6 ÷ 2.4 эВ. Такая энергия должна быть затрачена на разрыв связей при образовании вакансии. Однако вынутый атом размещается на поверхности, следовательно, можно считать, что половина разорванных связей восстанавливается. Энергия атома, находящегося на поверхности равна. Таким образом, величина энергия формирования вакансии Ef ≈ 0.8 ÷ 1.2 эВ. Миграция ваканисии Рассмотрим миграцию вакансий. Чтобы атом А перепрыгнул на пустой узел, в котором расположена вакансия, казалось бы ему не нужно преодолевать барьер, но это не так – надо разорвать связи.

Расчет энергии формирования вакансии

Кроме того, вдоль траектории миграции вакансии (или атома А) возникает энергетический барьер (энергетическая линза), создаваемый ближайшими атомами. Это наиболее наглядно видно в трехмерном кристалле Число ближайших соседей в сечении ABCD обычно меньше, чем у узле, z2 = 4. Если предположить, что пар
Слайд 23

Кроме того, вдоль траектории миграции вакансии (или атома А) возникает энергетический барьер (энергетическая линза), создаваемый ближайшими атомами. Это наиболее наглядно видно в трехмерном кристалле Число ближайших соседей в сечении ABCD обычно меньше, чем у узле, z2 = 4. Если предположить, что парный потенциал меняется слабо, то величину энергетического барьера для миграции вакансии можно оценить Emγ ≈ 0.8 ÷ 1 эВ.

Дилатационный объем вакансии. Пусть ω0 – объем, приходящийся на один атом твердого тела. При образовании вакансии поверхность за счет релаксации исказится, и объем кристалла V изменится. Оценки дают примерно δV(1)= - 0.1ω0, это результат был получен на основании результатов дилатационных эксперимент
Слайд 24

Дилатационный объем вакансии

Пусть ω0 – объем, приходящийся на один атом твердого тела. При образовании вакансии поверхность за счет релаксации исказится, и объем кристалла V изменится. Оценки дают примерно δV(1)= - 0.1ω0, это результат был получен на основании результатов дилатационных экспериментов, связанных с введением в образец множества вакансий. Отметим, что в матрице окружающей область образования вакансии происходит некоторое увеличение плотности вещества за счет релаксации. В рассмотренном выше механизме образовании вакансии атом выходит на поверхность. Связанное с этим дополнительное изменение объема составляет δV(2)=+ω0. Таким образом, суммарное изменение объема кристалла равно: δV=δV(1) + δV(2) =+0.9ω0

Изменение объема

Междоузлия в простых веществах и их характеристики. Рассмотрим следующий механизм формирования междоузельного атома. Пусть при формировании междоузлия атом вносится в кристалл с поверхности. Оценка энергии дает величину zi∙φ(R), где zi - число ближайших соседей, R – расстояние минимального сближения
Слайд 25

Междоузлия в простых веществах и их характеристики

Рассмотрим следующий механизм формирования междоузельного атома. Пусть при формировании междоузлия атом вносится в кристалл с поверхности. Оценка энергии дает величину zi∙φ(R), где zi - число ближайших соседей, R – расстояние минимального сближения междоузельного атома с ближайшими соседями. При этом, R < R* - равновесного расстояния в решетке, т.е. потенциальная энергия парного взаимодействия больше. Положение равновесия междоузельного атома определяется равновесием сил всех взаимодействующих пар. Число соседей определяется типом междоузлий. Как показывает эксперимент, обычно для наиболее представительного типа междоузлий энергия образования составляет величину Efi~ 3 ÷ 5 эВ и больше, чем для вакансий . В отличие от вакансии у междоузельного атома могут быть разные стационарные положения в одной решетке с разными энергиями образования -это означает, что в равновесии заселенность этих состояний будет различной. Если , то при низких температурах – заселены междоузлия типа 1. При повышении температуры – заселяются и места 2. В радиационных процессах междоузельные дефекты второго типа могут рождаться и при низких температурах.

Пример разных типов междоузлий для структуры -железа: А - I1- гантель ; б – I2 –гантель - ; в – I3 – краудион; г – I4 – смещенный краудион; д – I5 - октаэдрический междоузельный атом; е – I6 – тетраэдрический междоузельный атом.
Слайд 26

Пример разных типов междоузлий для структуры -железа: А - I1- гантель <100>; б – I2 –гантель - <110>; в – I3 – краудион; г – I4 – смещенный краудион; д – I5 - октаэдрический междоузельный атом; е – I6 – тетраэдрический междоузельный атом.

Величина энергия миграции междоузлия оценивается как EmI ~ 0.1 эВ, т.е. EmI
Слайд 27

Величина энергия миграции междоузлия оценивается как EmI ~ 0.1 эВ, т.е. EmI << EmV - энергии миграции вакансий. Этот факт обусловлен тем, что, как следует из численных расчетов характерное расстояние равновесия до ближайших соседей для междоузельного атома порядка тех расстояний, на которых междоузельный атом преодолевает энергетический барьер при прохождении линзы. Число же ближайших соседей zI  zL,т.е. высота барьера для миграции междоузельного атома должна быть мала. Рассмотрим вопрос о дилатационном объеме междоузлия. Как показывают дилатационные эксперименты при образовании междоузельного дефекта происходит увеличение объема кристалла. Величина изменения объема, приходящаяся на один междоузельный атом δV(1)=+0.1ω0. При образовании междоузлия твердое тело немного «распухает». Как и в случае с вакансией, при образовании междоузельного атома в матрице и соответственно его исчезновением на поверхности, дополнительное изменение объема образца составляет δV(2)= - ω0. Таким образом, суммарное изменение объема кристалла равно δV=δV(1) + δV(2) = - 0.9ω0

Разница между дилатационными и дифракционными измерениями!
Слайд 28

Разница между дилатационными и дифракционными измерениями!

Дефект Френкеля. Пара: вакансия-междоузельный атом. Объем матрицы вокруг дефектов, в пределах которой происходит рекомбинация называется зоной рекомбинации, Vрек – объем рекомбинации составляет величину порядка 10ω0. Зона рекомбинации вакансии и междоузельного атома Стабильность пары Френкеля в плос
Слайд 29

Дефект Френкеля

Пара: вакансия-междоузельный атом

Объем матрицы вокруг дефектов, в пределах которой происходит рекомбинация называется зоной рекомбинации, Vрек – объем рекомбинации составляет величину порядка 10ω0

Зона рекомбинации вакансии и междоузельного атома Стабильность пары Френкеля в плоскости {100} меди. Узлы, ограниченные пунктирной линией вокруг гантельного внедрения (крупные кружки), составляют рекомбинационный объем, т.е. попадая в них, вакансия рекомбинирует с внедрением

Свойства дефектов и их ансамблей в конденсированных средах Слайд: 30
Слайд 30
Свойства дефектов и их ансамблей в конденсированных средах Слайд: 31
Слайд 31
Дивакансия, Дефект Шотки
Слайд 32

Дивакансия, Дефект Шотки

Свойства дефектов и их ансамблей в конденсированных средах Слайд: 33
Слайд 33
ДЕФЕКТЫ УПАКОВКИ. В кристаллических решетках металлов, имеющих координационное число 12, т.е. наиболее плотноупакованных (гранецентрированная кубическая (ГЦК) и плотноупакованная гексагональная структура (ГПУ)), встречаются еще особого вида дефекты кристаллического строения называемые ошибками налож
Слайд 34

ДЕФЕКТЫ УПАКОВКИ

В кристаллических решетках металлов, имеющих координационное число 12, т.е. наиболее плотноупакованных (гранецентрированная кубическая (ГЦК) и плотноупакованная гексагональная структура (ГПУ)), встречаются еще особого вида дефекты кристаллического строения называемые ошибками наложения (упаковки). Расположение атомов в плотноупакованных кристаллических решетках. Светлые кружки- положения типа 1; Черные кружки – положения типа 2; Звездочки – положения типа- 3. Справа - правильное чередование слоев 1-2-1-2 (ГПУ), 123-123-123 правильное чередование слоев, приводящее к ГЦК слева – нарушение чередования 1-2-3-2-1. Вид сбоку. Приводит к двойникованию кристалла

3

Список похожих презентаций

Виды излучений и их свойства

Виды излучений и их свойства

Содержание. Виды излучений. Свойства. Применение. Виды излучений. В настоящее время мы знаем 6 видов излучения - гамма-излучение, рентгеновское излучение, ...
Свойства механических волн

Свойства механических волн

Волна- это процесс распространения колебаний в пространстве с течением времени. Условия возникновения волны:. Механические волны могут распространяться ...
Полупроводники и их свойства

Полупроводники и их свойства

Полупроводники Полупроводниковый диод Рекомбинация Собственная проводимость Проводники IV группы Решетка германия Примеси Сильно легированные полупроводники ...
Свойства рентгеновских лучей

Свойства рентгеновских лучей

Исторические события: исполнилось 110 лет открытию рентгеновского излучения (1895-2005), 100 лет назад стало известно о характеристическом рентгеновском ...
Свойства жидкости

Свойства жидкости

Список литературы. Альтшуль А.Д., Киселев П.Г. «Гидравлика и аэродинамика» – М.: Стройиздат, 1975 – 328с. Башта Т.М., Руднев С.С. и другие «Гидравлика, ...
Свойства жидкостей, газов и твердых тел в пословицах

Свойства жидкостей, газов и твердых тел в пословицах

Из чего состоят окружающие нас предметы? «Из молекул и атомов»,-без запинки ответит сейчас каждый школьник. Это представляется нам сейчас очевидной ...
Свойства газов

Свойства газов

Закономерности броуновского движения. 1905 год - А.Эйнштейн на основе МКТ разработал теорию броуновского движения и доказал, что смещение частицы ...
Физические величины и их измерение

Физические величины и их измерение

О понятии «физика». Что такое физика? Что изучает физика? Приведите примеры физических явлений. Почему физику считают одной из основных наук о природе? ...
Тепловые двигатели и их применение

Тепловые двигатели и их применение

Тепловой двигатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую ...
Сложные эфиры в природе и их применение

Сложные эфиры в природе и их применение

Сложные эфиры - это вещества, которые образуются в результате взаимодействия органических или кислородсодержащих неорганических кислот со спиртами ...
Жидкое состояние вещества. Свойства поверхности жидкости

Жидкое состояние вещества. Свойства поверхности жидкости

Цель урока:. познакомится со свойствами поверхностного слоя жидкости; сформировать понятие о коэффициенте поверхностного натяжения; совершенствовать ...
Звуковые волны и их влияние на живые организмы

Звуковые волны и их влияние на живые организмы

Цель работы. Исследовать природу звука Выяснить, какое действие оказывает звук на - животных - растения - человека. Звук, в широком смысле — у п р ...
Звуковые волны и их влияние на человека

Звуковые волны и их влияние на человека

содержание. ЗВУКОВЫЕ ВОЛНЫ И ИХ ХАРАКТЕРИСТИКИ: Что такое звук, источники звука Скорость и длина волны Громкость и высота звука Отражение звука Инфразвук ...
Звуковые волны в различных средах

Звуковые волны в различных средах

Актуализация знаний. Что такое колебания или колебательное движение? (Колебательное движение – это движение, повторяющееся во времени). Что такое ...
Звук, ультразвук, инфразвук и их использование

Звук, ультразвук, инфразвук и их использование

ЗВУК Человек живет в мире звуков. Звук – это то, что слышит ухо. Мы слышим голоса людей, пение птиц, звуки музыкальных инструментов, шум леса, гром ...
Звёзды и их судьбы

Звёзды и их судьбы

Рождение звезды. Звезды рождаются в галактиках из межзвездного вещества, неравномерно распределенного в пространстве, состоящего из газа и пыли, пронизанного ...
Свойства звуковой волны

Свойства звуковой волны

Первое свойство:. Распространение в среде с конечной скоростью. Скорость звука зависит: а) плотности среды, б) температуры среды. Скорость звука: ...
Свойства электромагнитных волн

Свойства электромагнитных волн

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени. Основные свойства электромагнитных волн. ...
Интерферометры и их применение

Интерферометры и их применение

Интерферометры и их применение. Содержание 1.Интерферометр 2.Разновидности интерферометров 3. Ультразвуковой интерферометр 4. Интерферометр звездный ...
Виды лазеров и их применение

Виды лазеров и их применение

Что такое лазер? Ла́зер (усиление света посредством вынужденного излучения) Лазер - источник электромагнитного излучения видимого, инфракрасного и ...

Конспекты

Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения волн. Свойства механических волн

15.01.2015. Тема : « Распространение колебаний в упругой среде. Волновое движение. Продольные и поперечные волны. Длина волны. Скорость распространения ...
Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Электромагниты, их свойства и применение. Конспект деловой игры для 8 класса. Ц е л ь у р о к а: Продолжить развитие навыков самостоятельной работы ...
Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Урок по теме: Электромагниты, их свойства и применение. План-конспект урока. Цель урока. : актуализировать знания  . об устройстве и принципе ...
Электрический ток в различных средах

Электрический ток в различных средах

Шайхина Гульназира Кажибаевна. учитель математики и физики. второй квалификационной категории. третьего базового уровня. КГУ «Средняя школа № ...
Электрический ток в различных средах

Электрический ток в различных средах

КГУ «Миролюбовская средняя школа». Конспект. открытого урока на тему:. «Электрический ток в различных средах». 10 класс. Естественно ...
Электрические цепи и их элементы

Электрические цепи и их элементы

Муниципальное образовательное учреждение. «Головинская средняя общеобразовательная школа. Белгородского района Белгородской области». ...
Физические величины и их измерение

Физические величины и их измерение

Урок 2. Физические величины и их измерение. . . Цели урока:. . а) образовательные. ученик должен усвоить:. - понятие физической величины ...
Свойства твёрдых тел, жидкостей и газов

Свойства твёрдых тел, жидкостей и газов

Тема: Свойства твёрдых тел, жидкостей и газов. Цель: Закрепить знания о состояниях тел. Задачи:. . Рассмотреть свойства твёрдых тел, жидкостей ...
Свойства звука

Свойства звука

. Тема: Свойства звука. . 11 класс. . . . Тип урока:. комбинированный. Цель:. 1. Сформировать понятие громкости, высоты, тембра звука ...
Звезды и их классификация

Звезды и их классификация

Тема урока:. . Звезды и их классификация. . Цель урока:. . . познакомить учащихся с физическими характеристиками звезд, расширить мировоззрение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:19 июня 2019
Категория:Физика
Содержит:34 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации