- диэлектрические потери

Презентация "диэлектрические потери" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "диэлектрические потери" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Диэлектрические потери
Слайд 1

Диэлектрические потери

В электрическом поле диэлектрики нагреваются, т.к. часть энергии электрического поля рассеива-ется в диэлектриках в виде тепла. Рассеиваемая за единицу времени энергия назы-вается диэлектрическими потерями (ДП). Нагрев диэлектриков приводит к ухудшению их свойств и ускорению процессов старения: в си
Слайд 2

В электрическом поле диэлектрики нагреваются, т.к. часть энергии электрического поля рассеива-ется в диэлектриках в виде тепла. Рассеиваемая за единицу времени энергия назы-вается диэлектрическими потерями (ДП). Нагрев диэлектриков приводит к ухудшению их свойств и ускорению процессов старения: в силовой электротехнике нагрев приводит к уменьшению электрической прочности, а значит к уменьшению надежности оборудования; в слаботочных устройствах нагрев приводит к уменьшению сопротивления изоляции, т.е. к повышению токов утечки в цепях.

Диэлектрические потери используются для термообработки материалов, которая называется диэлектрическим нагревом ( для полимеризации некоторых изделий из пластмасс). Диэлектрический нагрев отличается от классических способов нагрева тем, что он протекает равномерно по всему объему и не возникает внутр
Слайд 3

Диэлектрические потери используются для термообработки материалов, которая называется диэлектрическим нагревом ( для полимеризации некоторых изделий из пластмасс). Диэлектрический нагрев отличается от классических способов нагрева тем, что он протекает равномерно по всему объему и не возникает внутренних механических напряжений в результате неравномерности распределения температуры.

Количественная оценка ДП. Абсолютная величина ДП – Ра (мощность, рассеиваемая в диэлектрике в виде тепла); Удельные ДП - ,т.е. диэлектрические потери, приходящиеся на единицу объема материала; Угол ДП и тангенс этого угла , которые не зависят от объема диэлектрика и характеризуют качество самого мат
Слайд 4

Количественная оценка ДП

Абсолютная величина ДП – Ра (мощность, рассеиваемая в диэлектрике в виде тепла); Удельные ДП - ,т.е. диэлектрические потери, приходящиеся на единицу объема материала; Угол ДП и тангенс этого угла , которые не зависят от объема диэлектрика и характеризуют качество самого материала.

Схемы замещения диэлектрика. Идеальный диэлектрик Реальный диэлектрик ( без потерь)
Слайд 5

Схемы замещения диэлектрика

Идеальный диэлектрик Реальный диэлектрик ( без потерь)

Параллельная схема замещения
Слайд 6

Параллельная схема замещения

Последовательная схема замещения
Слайд 7

Последовательная схема замещения

Последовательная схема замещения Мощность ДП определяется по формуле: Параллельная схема замещения Мощность ДП определяется по формуле: и ДП не зависят от схемы замещения, но емкости значительно различаются:
Слайд 8

Последовательная схема замещения Мощность ДП определяется по формуле: Параллельная схема замещения Мощность ДП определяется по формуле: и ДП не зависят от схемы замещения, но емкости значительно различаются:

Для высококачественных диэлектриков , поэтому для последовательной схемы: = Для параллельной схемы замещения: Тогда Cp=Cs=C и ДП зависят от величины приложенного напряжения, частоты, а также от свойств самого диэлектрика: и .
Слайд 9

Для высококачественных диэлектриков , поэтому для последовательной схемы: = Для параллельной схемы замещения: Тогда Cp=Cs=C и ДП зависят от величины приложенного напряжения, частоты, а также от свойств самого диэлектрика: и .

Виды диэлектрических потерь. ДП , обусловленные поляризацией ( в диэлектриках с релаксационными видами поляризации); ДП, обусловленные сквозной электропроводностью (во всех диэлектриках); ДП, обусловленные ионизацией ( происходят в сильных электрических полях); ДП, обусловленные неоднородностью стру
Слайд 10

Виды диэлектрических потерь

ДП , обусловленные поляризацией ( в диэлектриках с релаксационными видами поляризации); ДП, обусловленные сквозной электропроводностью (во всех диэлектриках); ДП, обусловленные ионизацией ( происходят в сильных электрических полях); ДП, обусловленные неоднородностью структуры (только в твердых диэлектриках неоднородной структуры).

Процессы поляризации, электропроводности и ионизации независимы, следовательно ДП являются суммой составляющих, вызванных отдельными механизмами потерь. ДП, обусловленные релаксационными видами поляризации наблюдаются: - в полярных диэлектриках; - в диэлектриках ионной структуры с неплотной упаковко
Слайд 11

Процессы поляризации, электропроводности и ионизации независимы, следовательно ДП являются суммой составляющих, вызванных отдельными механизмами потерь. ДП, обусловленные релаксационными видами поляризации наблюдаются: - в полярных диэлектриках; - в диэлектриках ионной структуры с неплотной упаковкой ионов; - в сегнетоэлектриках; - в диэлектриках неоднородной структуры; - при высоких частотах наблюдаются резонансные потери, связанные с резонансной поляризацией.

ДП , обусловленные сквозной электропроводностью Для данного вида потерь : (1) т.е. ДП данного вида не зависят от частоты, а ДП возрастают с увеличением температуры по экспоненте: , где А и b – постоянные материала.
Слайд 12

ДП , обусловленные сквозной электропроводностью Для данного вида потерь : (1) т.е. ДП данного вида не зависят от частоты, а ДП возрастают с увеличением температуры по экспоненте: , где А и b – постоянные материала.

Или , где Pat – потери при определенной температуре; Рао – потери при - постоянная материала. Ионизационные потери. Данный вид ДП характерен для газов и проявляется в диэлектриках пористой структуры: где - постоянный коэффициент, f – частота элект-рического поля, U – приложенное напряжение, Uu – нап
Слайд 13

Или , где Pat – потери при определенной температуре; Рао – потери при - постоянная материала. Ионизационные потери. Данный вид ДП характерен для газов и проявляется в диэлектриках пористой структуры: где - постоянный коэффициент, f – частота элект-рического поля, U – приложенное напряжение, Uu – напряжение ионизации. ДП, обусловленные неоднородностью структуры наблюдаются: в слоистых диэлектриках ; в пористой керамике; в пропитанной бумаге и т.п.

Диэлектрические потери в газах. В слабых электрических полях: Так как все газы либо неполярны, либо слабополярны, то в них отсутствуют потери на поляризацию. Есть потери только на электропроводность. Для газов , и при f=50 Гц Таким образом газы являются практически идеальными диэлектриками в слабых
Слайд 14

Диэлектрические потери в газах

В слабых электрических полях: Так как все газы либо неполярны, либо слабополярны, то в них отсутствуют потери на поляризацию. Есть потери только на электропроводность. Для газов , и при f=50 Гц Таким образом газы являются практически идеальными диэлектриками в слабых электрических полях.

В сильных электрических полях: Так как в сильных электрических полях развивается ударная ионизация, то появляются потери на ионизацию и увеличивается. Зависимость от величины приложенного напряжения называется кривой ионизации.
Слайд 15

В сильных электрических полях: Так как в сильных электрических полях развивается ударная ионизация, то появляются потери на ионизацию и увеличивается. Зависимость от величины приложенного напряжения называется кривой ионизации.

Диэлектрические потери в жидких диэлектриках. Неполярные жидкие диэлектрики - в них нет потерь на поляризацию (электронная поляризация), присутствуют потери на электропроводность, но т.к. мала, то малы и ДП , а может быть рассчитан по формуле (1). Диэлектрические потери зависят от температуры ( увел
Слайд 16

Диэлектрические потери в жидких диэлектриках

Неполярные жидкие диэлектрики - в них нет потерь на поляризацию (электронная поляризация), присутствуют потери на электропроводность, но т.к. мала, то малы и ДП , а может быть рассчитан по формуле (1). Диэлектрические потери зависят от температуры ( увеличиваются по экспоненте при повышении температуры) и не зависят от частоты внешнего электрического поля.

Список похожих презентаций

Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
Атомная физика

Атомная физика

СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. Опыт Резерфорда. Определение размеров. атомного ядра Планетарная модель атома. Планетарная модель ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 апреля 2019
Категория:Физика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации