- «Интерференция света»

Презентация "«Интерференция света»" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40

Презентацию на тему "«Интерференция света»" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 40 слайд(ов).

Слайды презентации

Интерференция света. Всё известно вокруг, тем не менее На Земле ещё много того, Что достойно, поверь, удивления И твоего, и моего. (автор неизвестен)
Слайд 1

Интерференция света

Всё известно вокруг, тем не менее На Земле ещё много того, Что достойно, поверь, удивления И твоего, и моего. (автор неизвестен)

«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы». Марк Твен
Слайд 2

«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы». Марк Твен

Блиц – опрос. 1. Какое явление называется интерференцией волн? Интерференция – явление наложения когерентных волн, при котором образуется постоянное во времени распределение амплитуды результирующих колебаний в различных точках пространства. 2. Какие волны называются когерентными? Волны с одинаковой
Слайд 3

Блиц – опрос

1. Какое явление называется интерференцией волн?

Интерференция – явление наложения когерентных волн, при котором образуется постоянное во времени распределение амплитуды результирующих колебаний в различных точках пространства.

2. Какие волны называются когерентными?

Волны с одинаковой частотой и постоянной разностью фаз называются когерентными.

3.В каких точках пространства наблюдаются интерференционные максимумы?

Интерференционные максимумы наблюдаются в точках пространства, для которых геометрическая разность хода интерферирующих волн равна целому числу длин волн.

4. В каких точках пространства наблюдаются интерференционные минимумы? Интерференционные минимумы наблюдаются в точках пространства, для которых геометрическая разность хода интерферирующих волн равна нечетному числу полуволн. 5. Куда исчезает энергия двух волн в местах интерференционных минимумов?
Слайд 4

4. В каких точках пространства наблюдаются интерференционные минимумы?

Интерференционные минимумы наблюдаются в точках пространства, для которых геометрическая разность хода интерферирующих волн равна нечетному числу полуволн.

5. Куда исчезает энергия двух волн в местах интерференционных минимумов?

В местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн ровно на столько, на сколько уменьшилась энергия в местах интерференционных минимумов.

Интерференция света в природе. Радужная окраска крыльев и глаз насекомых
Слайд 5

Интерференция света в природе

Радужная окраска крыльев и глаз насекомых

Перламутр раковин
Слайд 6

Перламутр раковин

Интерференция света в быту и технике. Окраска нефтяных, масляных, мыльных пленок
Слайд 7

Интерференция света в быту и технике

Окраска нефтяных, масляных, мыльных пленок

«игра» света в пленках голографичеких этикеток торговых фирм
Слайд 8

«игра» света в пленках голографичеких этикеток торговых фирм

Цвета побежалости в технике. Цвета побежалости на разогретом лезвии бритвы. цвета побежалости — радужные цвета, образующиеся на гладкой поверхности металла или минерала в результате формирования тонкой прозрачной поверхностной оксидной плёнки и интерференции света в ней. Цвета побежалости обычно наб
Слайд 9

Цвета побежалости в технике

Цвета побежалости на разогретом лезвии бритвы

цвета побежалости — радужные цвета, образующиеся на гладкой поверхности металла или минерала в результате формирования тонкой прозрачной поверхностной оксидной плёнки и интерференции света в ней. Цвета побежалости обычно наблюдаются при нагревании сплавов железа, например, углеродистой стали.

Цвета побежалости при термообработке стали

Цвета побежалости в природе. Цвета побежалости на кристалле висмута. Цвета побежалости минерала Борнит. Цвета побежалости в оксидных пленках минералов
Слайд 10

Цвета побежалости в природе

Цвета побежалости на кристалле висмута

Цвета побежалости минерала Борнит

Цвета побежалости в оксидных пленках минералов

Немного истории. Итальянский ученый Ф. Гримальди проделал простой опыт по интерференции света: на пути солнечных лучей ставил диафрагму с двумя близкими отверстиями, получал два конуса световых лучей; помещая экран в том месте, где эти конусы накладываются друг на друга, заметил, что в некоторых мес
Слайд 11

Немного истории

Итальянский ученый Ф. Гримальди проделал простой опыт по интерференции света: на пути солнечных лучей ставил диафрагму с двумя близкими отверстиями, получал два конуса световых лучей; помещая экран в том месте, где эти конусы накладываются друг на друга, заметил, что в некоторых местах освещенность экрана меньше, чем если бы его освещал только один световой конус. Из этого опыта Гримальди сделал вывод, что прибавление света к свету не всегда увеличивает освещенность.

Попытки объяснить разноцветную окраску тонких масляных плёнок на поверхности воды делали в разное время независимо друг от друга английские ученые Роберт Бойль и Роберт Гук. Они объясняли данное явление отражением света от верхней и нижней поверхностей пленки. Роберт Гук Роберт Бойль
Слайд 12

Попытки объяснить разноцветную окраску тонких масляных плёнок на поверхности воды делали в разное время независимо друг от друга английские ученые Роберт Бойль и Роберт Гук. Они объясняли данное явление отражением света от верхней и нижней поверхностей пленки.

Роберт Гук Роберт Бойль

Один из основателей волновой оптики. Человек ярких дарований Томас Юнг (13.06.1773 – 10.05.1829) –известный врач и замечательный физик, астроном, механик, металлург и египтолог, океанограф и зоолог, востоковед и сатирик, геофизик и полиглот (знал 14 языков: греческий, латынь, древнееврейский, францу
Слайд 13

Один из основателей волновой оптики

Человек ярких дарований Томас Юнг (13.06.1773 – 10.05.1829) –известный врач и замечательный физик, астроном, механик, металлург и египтолог, океанограф и зоолог, востоковед и сатирик, геофизик и полиглот (знал 14 языков: греческий, латынь, древнееврейский, французский, итальянский, арабский, персидский, английский,…), серьезный знаток музыки и искусный музыкант, игравший едва ли не на всех инструментах того времени; отличный живописец и даже незаурядный гимнаст, акробат и наездник. Юнг был человеком почти таких же универсальных дарований, как Леонардо да Винчи.

«Всякий может делать то, что делают другие». Т. Юнг.

«Феномен Юнг» удивил весь научный мир своим простым опытом. В 1801г английский ученый Т. Юнг объяснил явление интерференции света на основе принципа суперпозиции световых когерентных волн и ввел термин «интерференция» в науку. Интерференция (лат.): «inter» между + «ferens» несущий, переносящий.
Слайд 14

«Феномен Юнг» удивил весь научный мир своим простым опытом

В 1801г английский ученый Т. Юнг объяснил явление интерференции света на основе принципа суперпозиции световых когерентных волн и ввел термин «интерференция» в науку.

Интерференция (лат.): «inter» между + «ferens» несущий, переносящий.

При каких условиях можно наблюдать интерференцию света? Интерференция света – это явление наложения световых волн друг на друга, приводящее к перераспределению энергии волн в пространстве, в результате чего происходит усиление или ослабление света. Условие интерференции – когерентность (согласованно
Слайд 15

При каких условиях можно наблюдать интерференцию света?

Интерференция света – это явление наложения световых волн друг на друга, приводящее к перераспределению энергии волн в пространстве, в результате чего происходит усиление или ослабление света. Условие интерференции – когерентность (согласованность) источников . Когерентные источники – это источники с одинаковой частотой и постоянной разностью фаз в любой точке пространства. В природе нет когерентных источников света!

- условие интерференции

Интерференционная картина. Интерференционная картина на экране – это чередование светлых (цветных) и темных полос на экране, максимумов и минимумов. По закону сохранения энергии: энергия световых волн никуда не исчезает, она только перераспределяется между максимумами и минимумами. max- свет; min- т
Слайд 16

Интерференционная картина

Интерференционная картина на экране – это чередование светлых (цветных) и темных полос на экране, максимумов и минимумов. По закону сохранения энергии: энергия световых волн никуда не исчезает, она только перераспределяется между максимумами и минимумами.

max- свет; min- тьма

Монохроматичность – одноцветность (ν=const): монос - один; хромос – цвет. Монохроматический свет – свет лазера; свет, пропущенный через светофильтр (цветное стекло).

Условие интерференционных максимумов и минимумов. Условие максимумов: Условие минимумов:
Слайд 17

Условие интерференционных максимумов и минимумов

Условие максимумов:

Условие минимумов:

Кольца Ньютона. И.Ньютон наблюдал и исследовал кольца не только в белом, но и при освещении линзы одноцветным (монохроматическим) светом. Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Это удалось Юнгу. в белом свете. в монохроматическом свете
Слайд 18

Кольца Ньютона

И.Ньютон наблюдал и исследовал кольца не только в белом, но и при освещении линзы одноцветным (монохроматическим) светом. Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Это удалось Юнгу.

в белом свете

в монохроматическом свете

Кольца Ньютона – интерференционная картина , имеющая вид концентрических колец и возникающая в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско – выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. В месте соприкосновения линзы и пластины тем
Слайд 19

Кольца Ньютона – интерференционная картина , имеющая вид концентрических колец и возникающая в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско – выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. В месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных (или одноцветных) колец. Расстояние между соседними кольцами быстро убывают с увеличением их радиуса.

Кольца Ньютона в монохроматическом свете

Интерферируют лучи1 и 2

Разные интерференционные картины колец Ньютона. Линза Пробное стекло. Кривизна линзы больше кривизны пробного стекла. Кривизна линзы меньше кривизны пробного стекла
Слайд 20

Разные интерференционные картины колец Ньютона

Линза Пробное стекло

Кривизна линзы больше кривизны пробного стекла

Кривизна линзы меньше кривизны пробного стекла

На фото - оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к к
Слайд 21

На фото - оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают...

И.Ньютон

Несмотря на название, первым опыт провел отнюдь не Исаак Ньютон. В 1663 г. другой англичанин, Роберт Бойль, первым обнаружил кольца Ньютона, а через два года опыт и открытие были независимо повторены Робертом Гуком. Ньютон же подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

Зарождение волновой оптики. В чем же удивительность этого простого эксперимента? В каждой точке происходит отражение света от поверхностей пластин (всего таких поверхностей четыре). Мы видим, что иногда это приводит к увеличению яркости, но кое-где свет + свет = темнота! Через сто с лишним лет Томас
Слайд 22

Зарождение волновой оптики

В чем же удивительность этого простого эксперимента? В каждой точке происходит отражение света от поверхностей пластин (всего таких поверхностей четыре). Мы видим, что иногда это приводит к увеличению яркости, но кое-где свет + свет = темнота! Через сто с лишним лет Томас Юнг "пролил свет" на причину этого явления, назвав ее интерференцией. Свет "чувствует" малейшие изменения расстояния между пластинами. Обратите внимание: на фото видна пылинка, попавшая в зазор между пластинами (там, где форма колец слегка искажена

Некоторые применения интерференции света. «Просветление оптики» - уменьшение отражения света от поверхности линзы в результате нанесения на нее специальной пленки. Фиолетовый или сиреневый оттенок просветленных объективов.
Слайд 23

Некоторые применения интерференции света

«Просветление оптики» - уменьшение отражения света от поверхности линзы в результате нанесения на нее специальной пленки. Фиолетовый или сиреневый оттенок просветленных объективов.

Проверка качества обработки поверхности. Неровности поверхности с точностью до 10 -6 см вызывают искривления интерференционных полос, образующихся при отражении света от контролируемой поверхности и нижней грани эталонной пластины. Деталь Эталон
Слайд 24

Проверка качества обработки поверхности. Неровности поверхности с точностью до 10 -6 см вызывают искривления интерференционных полос, образующихся при отражении света от контролируемой поверхности и нижней грани эталонной пластины.

Деталь Эталон

Не решить ли нам задачечку? Две когерентные световые волны достигают некоторой точки пространства с разностью хода Δd. Что произойдет в этой точке пространства усиление или ослабление света, если а) Δd=λ/2; б) Δd=λ ? max - ? min - ?
Слайд 25

Не решить ли нам задачечку?

Две когерентные световые волны достигают некоторой точки пространства с разностью хода Δd. Что произойдет в этой точке пространства усиление или ослабление света, если а) Δd=λ/2; б) Δd=λ ?

max - ? min - ?

Как решать задачу?
Слайд 26

Как решать задачу?

Фронтальный опрос по теме: «Интерференция света». Тесты
Слайд 27

Фронтальный опрос по теме: «Интерференция света»

Тесты

А знаете ли Вы? Скульптура «Мечта» ( девочка, пускающая мыльные пузыри) в г. Белгород установлена в 2005г.
Слайд 28

А знаете ли Вы?

Скульптура «Мечта» ( девочка, пускающая мыльные пузыри) в г. Белгород установлена в 2005г.

9 августа 1996 года новозеландец Алан Маккей выдул самый длинный мыльный пузырь – длиной 32 метра.
Слайд 29

9 августа 1996 года новозеландец Алан Маккей выдул самый длинный мыльный пузырь – длиной 32 метра.

Домашнее задание. § 57 («Физика 9 класс: учебник для общеобразовательных учреждений» А. В. Перышкин, Е. М. Гутник , Москва, «Дрофа», 2011. Знать ОК урока. ТЗ – 10, №14 («Физика 9 класс: учебно – методическое пособие (дидактические материалы)» А. Е. Марон, Е. А. Марон, Москва, «Дрофа», 2011. II часть
Слайд 30

Домашнее задание

§ 57 («Физика 9 класс: учебник для общеобразовательных учреждений» А. В. Перышкин, Е. М. Гутник , Москва, «Дрофа», 2011. Знать ОК урока. ТЗ – 10, №14 («Физика 9 класс: учебно – методическое пособие (дидактические материалы)» А. Е. Марон, Е. А. Марон, Москва, «Дрофа», 2011. II часть практической работы. Выполните три задания. 1) Бритвенное лезвие нагрейте на спичке, сотрите тряпочкой копоть и рассмотрите образовавшуюся на лезвии пленку. Зарисуйте порядок появления цветных полос. Объясните результат опыта.

II часть практической работы 2) Опустите очень маленькую каплю скипидара (масла) с конца иголки на поверхность воды. Образовавшуюся пленку наблюдайте в отраженном свете и зарисуйте. Объясните результат опыта. 3) С помощью трубки выдуйте небольшой мыльный пузырь и пронаблюдайте за образованием цветны
Слайд 31

II часть практической работы 2) Опустите очень маленькую каплю скипидара (масла) с конца иголки на поверхность воды. Образовавшуюся пленку наблюдайте в отраженном свете и зарисуйте. Объясните результат опыта. 3) С помощью трубки выдуйте небольшой мыльный пузырь и пронаблюдайте за образованием цветных интерференционных колец в белом и монохроматическом свете (через цветную пленку). Для желающих: подготовьте сообщение о мыльных пузырях: о приготовлении мыльных растворов, о способах выдувания больших мыльных пузырей, желающие могут на следующем уроке продемонстрировать и поделиться своим опытом.

Наблюдение интерференции света (практическая работа). Цель работы: пронаблюдать и зарисовать характерные особенности явления интерференции света , ответить на контрольные вопросы Оборудование: 1) спички, 2) спиртовка (свеча в металлической оправе), 3) комочек ваты на проволоке в пробирке, смоченный
Слайд 32

Наблюдение интерференции света (практическая работа)

Цель работы: пронаблюдать и зарисовать характерные особенности явления интерференции света , ответить на контрольные вопросы Оборудование: 1) спички, 2) спиртовка (свеча в металлической оправе), 3) комочек ваты на проволоке в пробирке, смоченный раствором хлорида натрия, 4) проволочное кольцо с ручкой, 5) стакан с мыльным раствором, 6) пластинки стеклянные (стекла предметные)-2шт., 7) бумажная салфетка для стекол, 8) светофильтр ( цветное стекло, цветная пленка).

Указания к работе. Для наблюдения интерференции при монохроматическом излучении в пламя спиртовки внесите комочек ваты, смоченный раствором хлорида натрия. При этом пламя окрашивается в желтый цвет. Опуская проволочное кольцо в мыльный раствор, получите мыльную пленку, расположите ее вертикально и р
Слайд 33

Указания к работе

Для наблюдения интерференции при монохроматическом излучении в пламя спиртовки внесите комочек ваты, смоченный раствором хлорида натрия. При этом пламя окрашивается в желтый цвет. Опуская проволочное кольцо в мыльный раствор, получите мыльную пленку, расположите ее вертикально и рассмотрите на темном фоне при освещении желтым светом спиртовки (свечи). Пронаблюдайте за образованием темных и желтых горизонтальных полос и изменением их ширины по мере уменьшения толщины пленки.

В тех местах, где разность хода когерентных лучей равна четному числу полуволн, наблюдаются светлые (цветные) полосы, а при нечетном числе полуволн – темные полосы.

При освещении пленки белым светом (от окна или лампы) возникает окрашивание светлых полос: вверху – в синий цвет, внизу – в красный. По мере уменьшения толщины пленки полосы, расширяясь, перемещаются вниз. Интерферируют световые волны отраженные от верхней и нижней граней пленки.
Слайд 34

При освещении пленки белым светом (от окна или лампы) возникает окрашивание светлых полос: вверху – в синий цвет, внизу – в красный. По мере уменьшения толщины пленки полосы, расширяясь, перемещаются вниз. Интерферируют световые волны отраженные от верхней и нижней граней пленки.

2. Две стеклянные пластинки тщательно протрите, сложите вместе и прижмите пальцами друг к другу. Рассмотрите пластины в отраженном свете на темном фоне (расположить их надо так, чтобы на поверхности стекла не образовывались слишком яркие блики от окон или от белых стен). В отдельных местах соприкосн
Слайд 35

2. Две стеклянные пластинки тщательно протрите, сложите вместе и прижмите пальцами друг к другу. Рассмотрите пластины в отраженном свете на темном фоне (расположить их надо так, чтобы на поверхности стекла не образовывались слишком яркие блики от окон или от белых стен). В отдельных местах соприкосновения пластин пронаблюдайте яркие радужные кольцеобразные или неправильной формы полосы. Заметьте изменения формы и расположения полученных интерференционных полос в зависимости от толщины воздушной прослойки между ними.

2. Из-за не идеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные прослойки, дающие яркие радужные кольцеобразные или замкнутые неправильной формы полосы. 3. Попытайтесь увидеть картину интерференции в проходящем свете. 4. Расположите на стеклянной пластине
Слайд 36

2. Из-за не идеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные прослойки, дающие яркие радужные кольцеобразные или замкнутые неправильной формы полосы. 3. Попытайтесь увидеть картину интерференции в проходящем свете. 4. Расположите на стеклянной пластине плоско – выпуклую линзу, сферическая поверхность которой имеет большой радиус кривизны и плотно прижмите линзу к поверхности пластины. В месте соприкосновения линзы и пластины темное пятно, а вокруг него совокупность маленьких радужных (или одноцветных) колец. Пронаблюдайте кольца ньютона в белом и монохроматическом свете.

Основные выводы из практической работы. Различные цвета тонких плёнок зависят от: 1) толщины плёнки; 2) угла падения; 3) частоты световой волны. Если плёнка имеет неодинаковую толщину, то при освещении её белым светом появляются различные цвета. Там, где плёнка тоньше усиливаются лучи с малой длиной
Слайд 37

Основные выводы из практической работы

Различные цвета тонких плёнок зависят от: 1) толщины плёнки; 2) угла падения; 3) частоты световой волны. Если плёнка имеет неодинаковую толщину, то при освещении её белым светом появляются различные цвета. Там, где плёнка тоньше усиливаются лучи с малой длиной волны (синие, фиолетовые), там, где толще – с большей длиной волны (оранжевые, красные).

Кольца Ньютона возникают при интерференции света, отраженного верхней и нижней границами воздушного зазора. Волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Волна 1 не изменяет своей фазы, а волна 2
Слайд 38

Кольца Ньютона возникают при интерференции света, отраженного верхней и нижней границами воздушного зазора. Волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Волна 1 не изменяет своей фазы, а волна 2 при отражении от пластины возвращается в противофазе. Поэтому лучи гасят друг друга и наблюдается тёмное пятно. В отраженном свете: тёмные кольца возникают при выполнении условия MAX: разность хода равна целому числу длин волн; светлые (цветные) кольца возникают там, где MIN: разность хода равна нечётному числу длин полуволн. Если свет, освещающий установку, белый, то будут наблюдаться цветные кольца.

Кольца Ньютона возникают при интерференции света, отраженного от четырех поверхностей соприкасающихся стеклянных пластин. В отдельных местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы в отраженном свете. Изменяя местоположение сжимающего усилия, м
Слайд 39

Кольца Ньютона возникают при интерференции света, отраженного от четырех поверхностей соприкасающихся стеклянных пластин. В отдельных местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы в отраженном свете. Изменяя местоположение сжимающего усилия, можно изменять конфигурацию и ширину полос, насыщенность их красками При определенном нажиме интерференционные полосы имеют форму почти концентрических окружностей.

Благодарим всех за внимание! До новых встреч!
Слайд 40

Благодарим всех за внимание! До новых встреч!

Список похожих презентаций

«Преломление света»

«Преломление света»

Урок № 1. Источники света. Распространение света. Свет - видимое излучение (излучение, воспинимаемое глазом). Естественные Искусственные Источники ...
«Закон отражения света»

«Закон отражения света»

Цель урока. Познакомиться: с законом отражения света; с диффузным и зеркальным отражением; Научиться: применять закон отражения для построения изображения ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.