- Селекция микроорганизмов. биотехнология

Презентация "Селекция микроорганизмов. биотехнология" по биологии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Селекция микроорганизмов. биотехнология" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Биология. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Селекция микроорганизмов Биотехнология
Слайд 1

Селекция микроорганизмов Биотехнология

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникно
Слайд 2

Традиционная селекция микроорганизмов (в основном бактерий и грибов) основана на экспериментальном мутагенезе и отборе наиболее продуктивных штаммов. Но и здесь есть свои особенности. Геном бактерий гаплоидный, любые мутации проявляются уже в первом поколении. Хотя вероятность естественного возникновения мутации у микроорганизмов такая же, как и у всех других организмов (1 мутация на 1 млн. особей по каждому гену), очень высокая интенсивность размножения дает возможность найти полезную мутацию по интересующему исследователя гену.

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленно
Слайд 3

В результате искусственного мутагенеза и отбора была повышена продуктивность штаммов гриба пеницилла более чем в 1000 раз. Продукты микробиологической промышленности используются в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. С помощью микробиологической промышленности получают антибиотики, аминокислоты, белки, гормоны, различные ферменты, витамины и многое другое.

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.
Слайд 4

Микроорганизмы используют для биологической очистки сточных вод, улучшений качеств почвы. В настоящее время разработаны методы получения марганца, меди, хрома при разработке отвалов старых рудников с помощью бактерий, где обычные методы добычи экономически невыгодны.

Биотехнология. Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.
Слайд 5

Биотехнология

Использование живых организмов и их биологических процессов в производстве необходимых человеку веществ. Объектами биотехнологии являются бактерии, грибы, клетки растительных и животных тканей. Их выращивают на питательных средах в специальных биореакторах.

Области применения
Слайд 6

Области применения

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.
Слайд 7

Новейшими методами селекции микроорганизмов, растений и животных являются клеточная, хромосомная и генная инженерия.

Генная инженерия. Генная инженерия — совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы — трансформированными. Традиционным объ
Слайд 8

Генная инженерия

Генная инженерия — совокупность методик, позволяющих выделять нужный ген из генома одного организма и вводить его в геном другого организма. Растения и животные, в геном которых внедрены «чужие» гены, называются трансгенными, бактерии и грибы — трансформированными. Традиционным объектом генной инженерии является кишечная палочка, бактерия, живущая в кишечнике человека. Именно с ее помощью получают гормон роста — соматотропин, гормон инсулин, который раньше получали из поджелудочных желез коров и свиней, белок интерферон, помогающий справиться с вирусной инфекцией.

Процесс создания трансформированных бактерий включает этапы: Рестрикция — «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов — рестриктаз. Создание вектора — специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой к
Слайд 9

Процесс создания трансформированных бактерий включает этапы:

Рестрикция — «вырезание» нужных генов. Проводится с помощью специальных «генетических ножниц», ферментов — рестриктаз. Создание вектора — специальной генетической конструкции, в составе которой намеченный ген будет внедрен в геном другой клетки. Основой для создания вектора являются плазмиды. Ген вшивают в плазмиду с помощью другой группы ферментов — лигаз. Вектор должен содержать все необходимое для управления работой этого гена — промотор, терминатор, ген-оператор и ген-регулятор, а также маркерные гены, которые придают клетке-реципиенту новые свойства, позволяющие отличить эту клетку от исходных клеток. Трансформация — внедрение вектора в бактерию. Скрининг — отбор тех бактерий, в которых внедренные гены успешно работают. Клонирование трансформированных бактерий.

Образование рекомбинантных плазмид: 1 — клетка с исходной плазмидой 2 — выделенная плазмида 3 — создание вектора 4 — рекомбинантная плазмида (вектор) 5 — клетка с рекомбинантной плазмидой
Слайд 10

Образование рекомбинантных плазмид: 1 — клетка с исходной плазмидой 2 — выделенная плазмида 3 — создание вектора 4 — рекомбинантная плазмида (вектор) 5 — клетка с рекомбинантной плазмидой

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены
Слайд 11

Эукариотические гены, в отличие от прокариотических, имеют мозаичное строение (экзоны, интроны). В бактериальных клетках отсутствует процессинг, а трансляция во времени и пространстве не отделена от транскрипции. В связи с этим для пересадки эффективнее использовать искусственно синтезированные гены. Матрицей для такого синтеза является иРНК. С помощью фермента обратная транскриптаза на этой иРНК сперва синтезируется цепь ДНК. Затем на ней с помощью ДНК-полимеразы достраивается вторая цепь.

Хромосомная инженерия. Хромосомная инженерия — совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или заме
Слайд 12

Хромосомная инженерия

Хромосомная инженерия — совокупность методик, позволяющих осуществлять манипуляции с хромосомами. Одна группа методов основана на введении в генотип растительного организма пары чужих гомологичных хромосом, контролирующих развитие нужных признаков (дополненные линии), или замещении одной пары гомологичных хромосом на другую (замещенные линии). В полученных таким образом замещенных и дополненных линиях собираются признаки, приближающие растения к «идеальному сорту».

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 г
Слайд 13

Метод гаплоидов основан на выращивании гаплоидных растений с последующим удвоением хромосом. Например, из пыльцевых зерен кукурузы выращивают гаплоидные растения, содержащие 10 хромосом (n = 10), затем хромосомы удваивают и получают диплоидные (n = 20), полностью гомозиготные растения всего за 2–3 года вместо 6–8-летнего инбридинга. Сюда же можно отнести и метод получения полиплоидных растений

Клеточная инженерия. Клеточная инженерия — конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции. Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культу
Слайд 14

Клеточная инженерия

Клеточная инженерия — конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции. Клетки растений и животных, помещенные в питательные среды, содержащие все необходимые для жизнедеятельности вещества, способны делиться, образуя клеточные культуры. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Следовательно, можно размножать растения в пробирках, помещая клетки в определенные питательные среды. Это особенно актуально в отношении редких или ценных растений.

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результа
Слайд 15

С помощью клеточных культур можно получать ценные биологически активные вещества (культура клеток женьшеня). Получение и изучение гибридных клеток позволяет решить многие вопросы теоретической биологии (механизмы клеточной дифференцировки, клеточного размножения и др.). Клетки, полученные в результате слияния протопластов соматических клеток, относящихся к разным видам (картофеля и томата, яблони и вишни и др.), являются основой для создания новых форм растений. В биотехнологии для получения моноклональных антител используются гибридомы — гибрид лимфоцитов с раковыми клетками. Гибридомы нарабатывают антитела, как лимфоциты, и обладают возможностью неограниченного размножения в культуре, как раковые клетки.

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.
Слайд 16

Метод пересадки ядер соматических клеток в яйцеклетки позволяет получить генетическую копию животного, то есть делает возможным клонирование животных. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Список похожих презентаций

Биотехнология. селекция микроорганизмов

Биотехнология. селекция микроорганизмов

Цели и задачи урока. 1. Обобщить, материал и проконтролировать знания учащихся по теме “Методы селекции растений и животных” 2. Систематизировать ...
Селекция микроорганизмов

Селекция микроорганизмов

Задачи урока:. Сформировать у учащихся представление об основных методах селекционной работы с микроорганизмами. Научить обосновывать значение метода ...
Селекция микроорганизмов

Селекция микроорганизмов

Микроорганизмы – обширная группа преимущественно одноклеточных живых существ, различных только под микроскопом и организованных проще, чем животные ...
Селекция микроорганизмов

Селекция микроорганизмов

Микроорганизмы. Бактерии, микроскопические грибы, простейшие. Использование микробов. В хлебопечении В виноделии В производстве кормового белка В ...
Роль микроорганизмов и личной гигиены в жизни человека

Роль микроорганизмов и личной гигиены в жизни человека

Актуальность. Здоровье человека закладывается в детстве. Организм ребенка гораздо чувствительнее к воздействиям внешней среды, чем организм взрослого; ...
Селекция коз

Селекция коз

Царство: Животные Тип: Хордовые Класс: Млекопитающие Отряд: Парнокопытные Семейство: Полорогие Подсемейство: Козлы Род: Горные козлы Вид: Безоаровый ...
Селекция животных

Селекция животных

Что такое селекция? Что такое порода? Что такое сорт? Что такое штамм? Какая наука является теоретической основой селекции? Как называются географические ...
Селекция животных

Селекция животных

Селекция-. (от лат. selectio, seligere – отбор), наука о методах создания высокопродуктивных сортов растений, пород животных и микроорганизмов. В ...
Селекция животных

Селекция животных

Селекция. Селекция — наука о методах создания новых пород животных, сортов растений, штаммов микроорганизмов с нужными человеку признаками. Для селекции ...
Генная инженерия и биотехнология

Генная инженерия и биотехнология

биотехнология. Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления ...
Физиология микроорганизмов

Физиология микроорганизмов

Энергия в бактериальной клетке накапливается в форме молекул АТФ. У хемоорганотрофных бактерий реакции, связанные с получением энергии в форме АТФ, ...
Распределение микроорганизмов в природе

Распределение микроорганизмов в природе

Микроорганизмы находятся в организме человека, животных, почве, воде и воздухе. В почве находятся сапрофиты, но вместе с выделениями человека и животных, ...
Очистка водоемов с помощью консорциума эффективных микроорганизмов

Очистка водоемов с помощью консорциума эффективных микроорганизмов

Органические продукты накапливаются на дне любого водоема, где формируют постоянно разлагающуюся биомассу донного ила. Разлагаясь, органические вещества ...
Основные направления в селекции микроорганизмов

Основные направления в селекции микроорганизмов

Микроорганизмы – обширная группа преимущественно одноклеточных живых существ, различных только под микроскопом и организованных проще, чем животные ...
Методы селекции растений, животных, микроорганизмов

Методы селекции растений, животных, микроорганизмов

Центры многообразия и происхождения культурных растений 1. Учение о центрах происхождения культурных растений создал Г.Д. Карпеченко А.В. Пустовойт ...
Методы селекции животных и микроорганизмов

Методы селекции животных и микроорганизмов

Отличия животных от растений:. У высших животных только половой способ размножения; Более медленные темпы развития; Небольшое число потомков; Наличие ...
Культивирование микроорганизмов

Культивирование микроорганизмов

Классификация процессов культивирования. 1) состоянию питательной среды (поверхностные и глубинные); 2) наличию или отсутствию перемешивания (динамические ...
Селекция растений

Селекция растений

группа растений одного вида, имеющая признаки, желательные для человека. Сорт -. 1.Дикий предок капусты. 2.Белокочанная капуста. 3.Кольраби. 4.Цветная ...
Селекция

Селекция

Селекция (от лат. selectio-выбор, отбор) - это наука о методах создания новых сортов растений и пород животных. По Н. И. Вавилову, селекция — это ...

Конспекты

Селекция растений и животных

Селекция растений и животных

Урок – практикум «Селекция растений и животных», 9 класс. Учитель биологии МОУ «Лицей № 3 им. П.А. Столыпина. . г. Ртищево Саратовской области». ...
Селекция как процесс и как наука

Селекция как процесс и как наука

Шаяхметова Л.Г., учитель. биологии первой категории. Большемешинской средней общеобразовательной школы. Тюлячинского муниципального района. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Биология
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации