- Ядерные силы. Энергия связи нуклонов в ядре, дефект массы

Конспект урока «Ядерные силы. Энергия связи нуклонов в ядре, дефект массы» по физике

Урок № 61-169 Ядерные силы. Энергия связи нуклонов в ядре, дефект массы. Ядерные

реакции Изотопы.

Ядерные силы – силы, действующие между ядерными частицами – нуклонами.

Свойства ядерных сил:

1. Это короткодействующие силы, действуют на расстояниях между нуклонами, порядка 10−15 м, и резко убывают при увеличении расстояния; при расстояниях 1,4 ∙ 10−15 м они уже практически равны 0.

2. Это самые мощные силы из всех, которыми располагает природа, поэтому взаимодействие частиц в ядре часто называют сильными взаимо­действиями.

3. Ядерным силам свойственно насыщение, т.е. нуклон взаимодействует не со всеми остальными нуклонами, а лишь с некоторыми ближайшими соседями.

4. Ядерным силам свойственна зарядовая независимость. Это значит, что с одинаковой по модулю силой притягиваются друг к другу и заря­женные, и незаряженные частицы, т.е. сила притяжения Fрр между двумя протонами равна силе притяжения Fпп между двумя нейтронами и равна силе притяжения Fрп между протоном и нейтроном.

5. Ядерные силы не являются центральными, т.е. они не направлены вдоль прямой, соединяющей центры этих зарядов.

6. Ядерные силы являются так называемыми обменными силами.

Обменные силы имеют квантовый характер, у них нет аналога в обычной физике. Взаимодействие между нуклонами возникает вследствие обмена между ними некоторой третьей частицей. Эту частицу называют π-мезоном, или пионом. Масса π -мезонов примерно в 280 раз больше массы электрона.

Устойчивость атомного ядра характеризуется энергией связи св.).

Точнейшие измерения показывают, что масса покоя ядра М всегда меньше суммы масс покоя со­ставляющих ее протонов и нейтронов: МяZmp+ Nmn.

Дефект масс - величина, на которую уменьшается масса всех нуклонов при образовании из них атомного ядра. Дефект масс равен разности между суммой масс покоя нуклонов и массой ядра Мя: ∆М=[Zmp + (A-Z)mn] - Мя, где mp, mn - массы протона и нейтрона, соответственно.

Энергия связи – минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные нуклоны или энергия, выделяющаяся при слиянии свободных нуклонов в ядро. Расчетная формула энергии связи:

Е св=∆mc2= [Zmp+(A-Z)mn- Мя ]c2 , где с=3·108 м/с – скорость света в вакууме.

Если в этой формуле массы протона, нейтро­на и ядра выражены в килограммах, а скорость света - в метрах в секунду, то энергия связи Есв будет измерена в джоулях. Одна­ко в физике атома и атомного ядра энергию ядер и элементарных частиц чаще выражают в мегаэлектрон-вольтах (МэВ): 1 МэВ = 1,6·10- 13 Дж.

Решая соответствующие задачи, можно получить энергию свя­зи в джоулях, а затем, если требуется, перевести ее в мегаэлектрон-вольты, разделив полученное число джоулей на 1,6·10- 13. Но гораздо проще получить значение энергии связи в мегаэлектрон­вольтах, если оставить массы протона, нейтрона и ядра выражен­ными в атомных единицах массы и умножить дефект массы ∆М не на с2, а на число 931. Одной атомной единице массы соответ­ствует энергия связи 931 МэВ. Е св=931· ∆М или Е св=931(Zmp + Nmn - Мя) МэВ

Энергия связи переходит в энергию излучае­мых при ядерных превращениях γ-квантов, ко­торая равна как раз Есв, а масса которых: ∆М = Е 2.

Если в результате реакции Е=∆Мc2 > 0, то энергия выделяется, если Е=∆М c2

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи εсв.

Удельная энергия связи - энергия связи, приходящаяся на один нуклон ядра, равна отношению энергии связи Есв к массо­вому числу ядра атома А: εсв=, Удельная энергия связи определяется экспериментально.

Ядерные реакции - процессы, происходящие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменя­ются квантовое состояние и нуклонный состав ис­ходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки делится на два ядра разных атомов. При реакциях синте­за происходит превращение легких ядер в более тяжелые.

ВНИМАНИЕ: Разница между хими­ческими и ядерными реакциями состоит в том, что в химических реакциях общее число атомов каждого опре­деленного элемента, а также атомы, состав­ляющие определенные вещества, остаются не­изменными. В ядерных реакциях изменяются и атомы, и элементы.

Изотопы - это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов Z и раз­личное число нейтронов n. Изотопы занимают одно и то же место в пери­одической системе элементов, откуда и произо­шло их название. По своим ядерным свойствам изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента опреде­ляются зарядом ядра, поскольку именно он вли­яет на структуру электронной оболочки атома.

Исключением являются изотопы легких элемен­тов. Изотопы водорода 1Н - протий, 2Н — дейте­рий, 3Н - тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1 : 4500) в обычный водород. При соединении дейтерия с кис­лородом образуется тяжелая вода. Она при норма­льном атмосферном давлении кипит при 101,2°С и замерзает при 3,8°С. Тритий β-радиоактивен с пе­риодом полураспада около 12 лет.

У всех химических элементов имеются изото­пы. У некоторых элементов имеются только не­стабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы. В атомной индустрии все воз­растающую ценность для челове­чества представляют радиоактивные изотопы.

1 МэВ = 1,6·10- 13 Дж; 1 а.е.м.= 1,66∙10-27 кг;



Задачи.

1. Определить полную энергию тела массой 10кг.

2.Вычислить дефект массы ядра изотопа неона двадцатого.Ne.

mp=1, 6724 ∙10 -27кг; mn =1, 6748 ∙10 -27кг; Мя=33,1888 ∙10 -27кг

3. Вычислить энергию связи ядра атома Li.

mp=1, 6724 ∙10 -27кг; mn =1, 6748 ∙10 -27кг; Мя=11,6475 ∙10 -27кг

4. При реакции деления ядер урана – 235 выделилось 1,204∙1026 МэВ энергии. Определить массу распавшегося урана, если при делении одного ядра выделяется

200 МэВ энергии.

5. Какая минимальная энергия необходима для расщепления азота N на протоны и нейтроны? mp=1,00783 а.е.м., mn =1,0086 а.е.м., mN=14,00307а.е.м.

6. Выделяется или поглощается энергия при следующих ядерных реакциях:

1). N+HeO+H; 2). Li+HHe+He; 3). Li+HeB+n

7. Вычислить энергию связи ядра атома дейтерия.

m p=1,00728 а.е.м., m n =1,00866 а.е.м., mе =0,00055 а.е.м., М изотопа= 2,01410 а.е.м.

8. Вычислить энергию связи ядер трития .

M p=1,00728 а.е.м., m n =1,00866 а.е.м., mе =0,00055 а.е.м, М изотопа=3,01602 а.е.м












http://landing.megapost.info/phisic/

3


Здесь представлен конспект к уроку на тему «Ядерные силы. Энергия связи нуклонов в ядре, дефект массы», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Физика Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Ядерные реакции. Энергия связи. Дефект масс

Ядерные реакции. Энергия связи. Дефект масс

МБОУ «Учхозская средняя общеобразовательная школа» Краснослободского муниципального района Республики Мордовия. Конспект урока по информатике в ...
Энергия связи ядер. Цепные реакции

Энергия связи ядер. Цепные реакции

Тема урока: Решение задач «Энергия связи ядер. Цепные реакции». 11 класс. Учитель: Каменцева О.Н. 20.02.14 г. Цели урока:. обобщить и систематизировать ...
Относительность и одновременность событий. Закон взаимосвязи массы и энергии

Относительность и одновременность событий. Закон взаимосвязи массы и энергии

Бюджетное общеобразовательное учреждение. . города Омска. «Средняя общеобразовательная школа № 77». Конспект урока по физике. ...
Решение задач на нахождение сопротивления проводника, силы тока и напряжения

Решение задач на нахождение сопротивления проводника, силы тока и напряжения

«Решение задач на нахождение сопротивления. проводника, силы тока и напряжения». Ф.И.О. Манаева Юлия Александровна. Должность: учитель физики ...
Реактивное движение. Энергия

Реактивное движение. Энергия

План №______. Класс 9. Тема:. Реактивное движение. Энергия. Тип урока:. комбинированный. Цели:. познакомиться с особенностями и характеристиками ...
Расчет массы и объема тела по его плотности

Расчет массы и объема тела по его плотности

Урок физики в 7 классе. по теме: «Расчет массы и объема тела по его плотности». Цели урока: продолжить формирование основных понятий (плотность, ...
Движение тел под действием силы тяжести

Движение тел под действием силы тяжести

Мокеева Татьяна Юрьевна. Урок физики в 7 классе. Движение тел под действием силы тяжести. Цель:. 1. Объяснить причину притяжения тел к Земле. ...
Энергия

Энергия

Синквейн - Составная часть урока. . Воронкова Екатерина Валерьевна. учитель физики, ГОУ СОШ № 1388 г. Москвы. Класс:. 10, 11 класс. Тип урока:. ...
Электрическая емкость. Конденсатор. Энергия электрического поля конденсатора

Электрическая емкость. Конденсатор. Энергия электрического поля конденсатора

№__________сабақтың жоспары. План урока №___________________. Сабақтың тақырыбы:. . Тема урока. :. Электрическая емкость. Конденсатор. Энергия ...
Сила тока. Измерение силы тока

Сила тока. Измерение силы тока

Урок физики. Класс:. 8. Авторы программы:. А.В. Перышкин, Е.М. Гутник. Учитель:. Захарова Светлана Николаевна. Тема урока:. Сила ...
Масса тела. Единицы массы

Масса тела. Единицы массы

Тема урока. :. Масса тела. Единицы массы. Цель урока:. Формирование у учащихся понятия массы. План урока:. 1.Орг. момент. 2.Изучение нового ...
Конденсаторы. Энергия электрического поля.

Конденсаторы. Энергия электрического поля.

ПЛАН – КОНСПЕКТ УРОКА. Тема. : Конденсаторы. Энергия электрического поля. Цели урока:. 1.Знакомстро учащихся с конденсаторами – накопителями энергии ...
Исследование зависимости силы трения от силы нормального давления

Исследование зависимости силы трения от силы нормального давления

В примерной программе по физике есть лабораторная работа "Исследование зависимости силы трения от силы нормального давления". В учебнике "Физика-7" ...
Исследование зависимости силы тока от напряжения. Сопротивление проводника

Исследование зависимости силы тока от напряжения. Сопротивление проводника

Муниципальное общеобразовательное учреждение. «Ялгинская средняя общеобразовательная школа». Городского округа Саранск Республики Мордовия. ...
Изучение архимедовой силы

Изучение архимедовой силы

Урок-исследование «Изучение архимедовой силы» 7 класс. Автор - учитель физики МАОУ лицея № 14 имени Ю.А. Гагарина. Щёлковсого муниципального района ...
Измерение массы тела на рычажных весах

Измерение массы тела на рычажных весах

ГБОУ ООШ с. Тяглое Озеро. Урок физики. . в 7 классе по теме. «Измерение массы тела на рычажных весах». Учитель физики:. ...
Измерение массы тела на рычажных весах

Измерение массы тела на рычажных весах

Тема:. Измерение массы на весах. Лабораторная работа «Измерение массы тела на рычажных весах». Методические цели:. Образовательные:. способствовать ...
Сборка электрической цепи и измерение силы тока в её различных участках

Сборка электрической цепи и измерение силы тока в её различных участках

Средняя школа № 31. . пос. Жалагаш, Кызылординской области, Казахстан. Конспект урока по физике в 8 классе. . . Лабораторная ...
Сила тока. Измерение силы тока

Сила тока. Измерение силы тока

Тема урока. . « . Сила тока. Измерение силы тока». Тип урока: . формирование новых знаний. Цели урока:. -. сформировать у учащихся понятие, ...
Масса тела. Единицы массы. Измерение массы

Масса тела. Единицы массы. Измерение массы

Урок по теме. : «Масса тела. Единицы массы. Измерение массы» Физика 7 класс Казанцева Е.А. . . Цели урока:. введение понятия массы, как меры инертности ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:31 октября 2016
Категория:Физика
Поделись с друзьями:
Скачать конспект