- Правильные фигуры и тела

Презентация "Правильные фигуры и тела" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Правильные фигуры и тела" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Правильные фигуры и тела. Выполнила: Беленкова Ольга Александровна
Слайд 1

Правильные фигуры и тела

Выполнила: Беленкова Ольга Александровна

Введение.
Слайд 2

Введение.

Правильные фигуры и тела. Геометрия - раздел математики, изучающий пространственные отношения и формы. Пусть дан в окружность равнобедренный треугольник ACD, у которого угол C равен углу D и равный двум углам A. Проведем биссектрисы CE и CB углов Си D соответственно. Тогда угол А будет равен всем че
Слайд 3

Правильные фигуры и тела.

Геометрия - раздел математики, изучающий пространственные отношения и формы. Пусть дан в окружность равнобедренный треугольник ACD, у которого угол C равен углу D и равный двум углам A. Проведем биссектрисы CE и CB углов Си D соответственно. Тогда угол А будет равен всем четырем полученным углам, а, следовательно, будут равны соответствующие им дуги и стягивающие их хорды, то есть AB=BC=CD=DE=EA. Итак, вписанный в окружность пятиугольник ABCDE будет равносторонним. Поскольку угол шесть равен углу два и угол семь равен углу пять как углы, опирающиеся на одинаковые дуги AE и AB соответственно, то все углы 1-7 будут равными и, следовательно, каждый угол пятиугольника ABCDE будет составлен из трех равных углов, то есть угол A равен углу B и равен углу C углу D и углу E. Также все эти углы равны трем углам CAD. Таким образом, построенный пятиугольник является равносторонним и равноугольным, то есть правильным.

Правильные многогранники и научные факты. Правильных многогранников всего ПЯТЬ! Сама природа подсказала пифагорейцам форму правильных тел: кристаллы поваренной соли имеют форму куба, кристаллы квасцов октаэдра, а кристаллы пирита – додекаэдра. Однако важнейшее свойство выпуклых многогранников было у
Слайд 4

Правильные многогранники и научные факты.

Правильных многогранников всего ПЯТЬ! Сама природа подсказала пифагорейцам форму правильных тел: кристаллы поваренной соли имеют форму куба, кристаллы квасцов октаэдра, а кристаллы пирита – додекаэдра. Однако важнейшее свойство выпуклых многогранников было установлено лишь в середине 18 века теоремой Эйлера: во всяком выпуклом многограннике число вершин (L) плюс число граней (M) минус число ребер (N) есть величина постоянная равная двум: L+M-N=2

Правильные фигуры и тела Слайд: 5
Слайд 5
Научные фантазии и правильные многогранники. МНОГОГРАННИК - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника. Ни одни геометрические тела не обладают таким соверше
Слайд 6

Научные фантазии и правильные многогранники.

МНОГОГРАННИК - геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - написал когда-то Л. Кэрролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Тетраэдр. Тетраэдр-четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников.
Слайд 7

Тетраэдр.

Тетраэдр-четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников.

Куб. Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами.
Слайд 8

Куб.

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами.

Октаэдр. Октаэдр-восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников.
Слайд 9

Октаэдр.

Октаэдр-восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников.

Додекаэдр. Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников.
Слайд 10

Додекаэдр.

Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников.

Икосаэдр. Икосаэдр-двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников.
Слайд 11

Икосаэдр.

Икосаэдр-двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников.

Правильные фигуры и тела Слайд: 12
Слайд 12
Мистика ПЯТИ правильных многогранников. Платон считал, что мир строится из четырех "стихий" - огня, земли, воздуха и воды, а атомы этих «стихий" имеют форму четырех правильных многогранников. Итак, тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегос
Слайд 13

Мистика ПЯТИ правильных многогранников.

Платон считал, что мир строится из четырех "стихий" - огня, земли, воздуха и воды, а атомы этих «стихий" имеют форму четырех правильных многогранников. Итак, тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества – твердым, жидким, газообразным и плазменным. Пятый многогранник - додекаэдр - воплощал в себе «все сущее", символизировал весь мир и почитался главнейшим.

Теории о кристаллах. Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, з
Слайд 14

Теории о кристаллах.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Гипотеза о ядре Земли. Идеи Пифагора, Платона, Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли свое продолжение в интересной научной гипотезе, которую вначале 80-х гг. высказали московские инженеры В. Марков и В.Морозов. Они считают, что ядро Земли имеют
Слайд 15

Гипотеза о ядре Земли.

Идеи Пифагора, Платона, Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли свое продолжение в интересной научной гипотезе, которую вначале 80-х гг. высказали московские инженеры В. Марков и В.Морозов. Они считают, что ядро Земли имеют форму и свойства растущего кристалла. Оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдровую структуру Земли. Она появляется в том, что в земной коре как бы поступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины ребер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определяет отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Правильные многогранники в природе. Правильные многогранники встречаются и в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Интересно, что икосаэдр оказался в центре внимания биологов в их спорах относительно формы некоторых вирусов. Вирус не может бы
Слайд 16

Правильные многогранники в природе.

Правильные многогранники встречаются и в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Интересно, что икосаэдр оказался в центре внимания биологов в их спорах относительно формы некоторых вирусов. Вирус не может быть совершенно круглым, как считалось раньше. Для того чтобы определить его форму, брали разные многогранники, направляли на них свет под теми же углами, что и поток атома на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Подтверждением того служит форма некоторых кристаллов. Взять хоть бы поваренную соль, без которой мы не можем обойтись. Известно, что она хорошо растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба. При производстве алюминия пользуются алюминиево-кальциевыми квасцами (К[АI(SО4)2] . 12Н20), монокристалл который имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра. Итак, благодаря правильным многогранникам открываются не только удивительные свойства геометрических фигур, но и пути познания природной гармонии.

Практикум. Геометрические способности пчел проявляются при построении сот. Если разрезать пчелиные соты плоскостью, перпендикулярной их ребрам, то станет видна сеть равных друг другу правильных шестиугольников, уложенных в виде паркета. Возникает вопрос: "Почему пчелы строят соты именно так: он
Слайд 17

Практикум.

Геометрические способности пчел проявляются при построении сот. Если разрезать пчелиные соты плоскостью, перпендикулярной их ребрам, то станет видна сеть равных друг другу правильных шестиугольников, уложенных в виде паркета. Возникает вопрос: "Почему пчелы строят соты именно так: они предпочли сеть правильных шестиугольников, а не правильных треугольников или квадратов, ведь их, кажется, проще сконструировать?" Чтобы ответить на этот вопрос, необходимо предварительно выяснить, какими правильными многоугольниками можно заполнить плоскость так, чтобы не было пропусков, т.е. уложить их в виде паркета. Такими многоугольниками могут быть только правильные треугольники, квадраты и правильные шестиугольники.

Для того, чтобы выяснить, почему пчела строит соты, перпендикулярное сечение которых есть правильный шестиугольник, а не правильный треугольник или квадрат, решим для этого приведенную нижу задачу. Задача. Даны три равновеликие друг другу фигуры - правильный треугольник, квадрат и правильный шестиуг
Слайд 18

Для того, чтобы выяснить, почему пчела строит соты, перпендикулярное сечение которых есть правильный шестиугольник, а не правильный треугольник или квадрат, решим для этого приведенную нижу задачу. Задача. Даны три равновеликие друг другу фигуры - правильный треугольник, квадрат и правильный шестиугольник. Какая из данных фигур имеет наименьший периметр? Мы видим, что из трех правильных многоугольников с одинаковой площадью наименьший периметр имеет правильный шестиугольник, мудрые пчелы экономят воск и время для построения сот.

Заключение. Правильные многогранники на протяжении всей истории человечества не переставали восхищать пытливые умы симметрией, мудростью и совершенством своих форм. Леонардо да Винчи любил мастерить каркасы правильных тел и преподносить их в дар знатным особам, возможно, пытаясь таким образом приобщ
Слайд 19

Заключение.

Правильные многогранники на протяжении всей истории человечества не переставали восхищать пытливые умы симметрией, мудростью и совершенством своих форм. Леонардо да Винчи любил мастерить каркасы правильных тел и преподносить их в дар знатным особам, возможно, пытаясь таким образом приобщить сильных мира сего к философским размышлениям о красоте вечных истин. Но на пяти правильных телах история многогранников не остановилась. Вслед за правильными телами Платона были открыты полуправильные тела Архимеда, грани которых составлены из правильных равных многоугольников несколько видов, причем в каждой вершине сходится одно и то же число одинаковых граней в одинаковом порядке и многогранные углы при вершинах равны. Заметим, что тела Архимеда могут быть получены из соответствующих тел Платона снятием равных фасок. Тел Архимеда всего 13. Любопытно, что во второй половине ХХ в. было обнаружено еще одно тело Архимеда псевдоромбокубооктаэдр, которое не может быть получено путем однотипных усечением тела Платона и поэтому в течение 2000 лет оставалось незамеченным. И все-таки знакомство с многогранниками я советую начать с «Начал» Евклида, ибо, как сказал Альберт Эйнштейн, «Тот не рожден для теоретических исследований. Кто в молодости не восхищался этим творением».

Спасибо за внимание!
Слайд 20

Спасибо за внимание!

Список похожих презентаций

«Правильные и неправильные дроби»

«Правильные и неправильные дроби»

«Учёные Грузии нашли золото в составе крови человека». Из журнальной статьи. “ЗОЛОТАЯ КРОВЬ” (ЭДУАРД АСАДОВ). Не так давно учёные открыли Пусть небольшой, ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:13 июня 2019
Категория:Математика
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации