- Множественная регрессия и корреляция

Презентация "Множественная регрессия и корреляция" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28

Презентацию на тему "Множественная регрессия и корреляция" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 28 слайд(ов).

Слайды презентации

Лекция № 5 множественная регрессия и корреляция.
Слайд 1

Лекция № 5 множественная регрессия и корреляция.

Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучение функции издержек производства, в макроэкономических расчетах.
Слайд 2

Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучение функции издержек производства, в макроэкономических расчетах.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
Слайд 3

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

например. Современная потребительская функция чаще всего рассматривается как модель вида С – потребление; у – доход; P – цена, индекс стоимости жизни; M – наличные деньги; Z – ликвидные активы;
Слайд 4

например

Современная потребительская функция чаще всего рассматривается как модель вида С – потребление; у – доход; P – цена, индекс стоимости жизни; M – наличные деньги; Z – ликвидные активы;

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели.
Слайд 5

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели.

Условия включения факторов при построении множественной регрессии. 1. Они должны быть количественно измеримы. Если необходимо включить модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.
Слайд 6

Условия включения факторов при построении множественной регрессии.

1. Они должны быть количественно измеримы. Если необходимо включить модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.

например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости учитывается место нахождения недвижимости: районы могут быть пронумерованы.
Слайд 7

например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости учитывается место нахождения недвижимости: районы могут быть пронумерованы.

2. Факторы не должны быть интеркоррелированы.
Слайд 8

2. Факторы не должны быть интеркоррелированы.

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.
Слайд 9

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.

Так, в уравнении предполагается, что факторы и независимы друг от друга, т.е. Тогда можно говорить, что параметр измеряет силу влияния фактора на результат при неизменном значении фактора . Если же , то с изменением фактора фактор не может оставаться неизменным. Отсюда и нельзя интерпретировать как
Слайд 10

Так, в уравнении предполагается, что факторы и независимы друг от друга, т.е. Тогда можно говорить, что параметр измеряет силу влияния фактора на результат при неизменном значении фактора . Если же , то с изменением фактора фактор не может оставаться неизменным. Отсюда и нельзя интерпретировать как показатели раздельного влияния и на у .

Пример. Рассмотрим регрессию себестоимости: единицы продукции (руб.,у) от заработной платы работника (руб., ) и производительности его труда (единиц в час, ): = 0,95
Слайд 11

Пример.

Рассмотрим регрессию себестоимости: единицы продукции (руб.,у) от заработной платы работника (руб., ) и производительности его труда (единиц в час, ): = 0,95

Отбор факторов при построении множественной регрессии.
Слайд 12

Отбор факторов при построении множественной регрессии.

отбор факторов обычно осуществляется в две стадии на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют существенность включения в уравнение регрессии каждого из факторов.
Слайд 13

отбор факторов обычно осуществляется в две стадии на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют существенность включения в уравнение регрессии каждого из факторов.

Коэффициенты интеркорреляции – коэфф. корреляции между объясняющими переменными. Считается, что две переменные явно коллинеарны, т.е находятся между собой в линейной зависимости, если rxixj> 0,7. Поэтому одним из условий построения уравнения множественной регрессии является независимость действия
Слайд 14

Коэффициенты интеркорреляции – коэфф. корреляции между объясняющими переменными. Считается, что две переменные явно коллинеарны, т.е находятся между собой в линейной зависимости, если rxixj> 0,7. Поэтому одним из условий построения уравнения множественной регрессии является независимость действия факторов .

Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии.
Слайд 15

Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии.

Предпочтение отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточной тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.
Слайд 16

Предпочтение отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточной тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:
Слайд 17

Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:

Очевидно, что факторы x и z дублируют друг друга. В анализ целесообразно включить фактор z , а не x, хотя корреляция z с результатом y слабее, чем корреляция фактора x с y (ryz
Слайд 19

Очевидно, что факторы x и z дублируют друг друга. В анализ целесообразно включить фактор z , а не x, хотя корреляция z с результатом y слабее, чем корреляция фактора x с y (ryz

пример
Слайд 20

пример

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью.
Слайд 21

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции была бы единичной матрицей т.е.
Слайд 22

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции была бы единичной матрицей т.е.

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:
Слайд 23

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:

Таким образом, чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии.
Слайд 24

Таким образом, чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов.
Слайд 25

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов.

Сравнивая между собой коэффициенты множественной детерминации факторов оставляем в уравнении факторы с минимальной величиной коэффициента множественной детерминации.
Слайд 26

Сравнивая между собой коэффициенты множественной детерминации факторов оставляем в уравнении факторы с минимальной величиной коэффициента множественной детерминации.

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться; и Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является ли
Слайд 27

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться; и Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.

Так, если для регрессии, включающих пять факторов, коэффициент детерминации составил 0,857 и включение шестого фактора дало коэффициент детерминации 0,858, то вряд ли целесообразно дополнительно включать в модель этот фактор.
Слайд 28

Так, если для регрессии, включающих пять факторов, коэффициент детерминации составил 0,857 и включение шестого фактора дало коэффициент детерминации 0,858, то вряд ли целесообразно дополнительно включать в модель этот фактор.

Список похожих презентаций

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 мая 2019
Категория:Математика
Содержит:28 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации