- Элементы iv группы главной подгруппыпериодической системы элементов таблицы Менделеева

Презентация "Элементы iv группы главной подгруппыпериодической системы элементов таблицы Менделеева" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35

Презентацию на тему "Элементы iv группы главной подгруппыпериодической системы элементов таблицы Менделеева" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Разные. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 35 слайд(ов).

Слайды презентации

Элементы IV группы главной подгруппы периодической системы элементов таблицы Менделеева. Выполнила студентка группы х-116 Осипова Вера Руководитель: к.х.н., доц. НХ и ХТ Перегудов Ю.С. Кафедра неорганической химии и химической технологии. Воронежский Государственный Университет Инженерных Технологий
Слайд 1

Элементы IV группы главной подгруппы периодической системы элементов таблицы Менделеева

Выполнила студентка группы х-116 Осипова Вера Руководитель: к.х.н., доц. НХ и ХТ Перегудов Ю.С. Кафедра неорганической химии и химической технологии

Воронежский Государственный Университет Инженерных Технологий

Подгруппа углерода, в которую входят углерод, кремний, германий, олово и свинец, является главной подгруппой 4 группы Периодической системы. Дмитрий Иванович Менделеев
Слайд 2

Подгруппа углерода, в которую входят углерод, кремний, германий, олово и свинец, является главной подгруппой 4 группы Периодической системы.

Дмитрий Иванович Менделеев

С 2s22p2 Si 3s23p23d0 Ge 3d104s24p24d0 Sn 4d105s25p25d0 Pb 4f145d106s26p26d0. Начиная с кремния, р-элементы IV группы имеют вакантные d-орбитали. Это определяет возможность образования связей по донорно-акцепторному механизму и приводит к увеличению валентности в координационных соединениях до VI. В
Слайд 3

С 2s22p2 Si 3s23p23d0 Ge 3d104s24p24d0 Sn 4d105s25p25d0 Pb 4f145d106s26p26d0

Начиная с кремния, р-элементы IV группы имеют вакантные d-орбитали. Это определяет возможность образования связей по донорно-акцепторному механизму и приводит к увеличению валентности в координационных соединениях до VI. Ввиду отсутствия d-подуровня у атома углерода его валентность в соединениях не может быть более IV, и углерод, в отличие от Si, Ge, Sn и Pb, не способен образовывать комплексные соединения.

Углерод и кремний являются типичными неметаллами, а олово и свинец – типичными металлами. Германий занимает промежуточное положение.
Слайд 4

Углерод и кремний являются типичными неметаллами, а олово и свинец – типичными металлами. Германий занимает промежуточное положение.

Степень окисления. все элементы имеют характерные степени окисления 4, +2, +4. Как и у всех элементов главных подгрупп периодической системы, при движении сверху вниз устойчивость соединений «крайних» степеней окисления (4 и +4) уменьшается, а степени окисления +2 увеличивается.
Слайд 5

Степень окисления

все элементы имеют характерные степени окисления 4, +2, +4. Как и у всех элементов главных подгрупп периодической системы, при движении сверху вниз устойчивость соединений «крайних» степеней окисления (4 и +4) уменьшается, а степени окисления +2 увеличивается.

Общая характеристика подгруппы. Атомный радиус сверху вниз возрастает Температура плавления и кипения убывает Энергия ионизации убывает Металлические свойства увеличиваются Основные свойства увеличиваются
Слайд 6

Общая характеристика подгруппы

Атомный радиус сверху вниз возрастает Температура плавления и кипения убывает Энергия ионизации убывает Металлические свойства увеличиваются Основные свойства увеличиваются

Углерод
Слайд 7

Углерод

Физические свойства. Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.
Слайд 8

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Известны четыре кристаллические модификации углерода: графит, алмаз, карбин и лонсдейлит. Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском, обладает электропроводимостью. Сгорает при 700С в присутствии кислорода. Встречается в природе; получ
Слайд 9

Известны четыре кристаллические модификации углерода: графит, алмаз, карбин и лонсдейлит. Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском, обладает электропроводимостью. Сгорает при 700С в присутствии кислорода. Встречается в природе; получается искусственно. При высокой температуре, давлении и присутствии катализатора (марганец Mn, хром Cr, платиновые металлы) графит превращается в алмаз. Алмаз - минерал, имеющий желтоватый, белый, серый, зеленоватый, реже голубой и черный цвет. Не проводит электрический ток, плохо проводит тепло.. Алмаз - это самое твердое вещество из всех известных. Температура плавления выше 3500 С. Химически стоек. Сгорает при 870С в присутствии кислорода. При 1800С в отсутствие кислорода превращается в графит. Прозрачные кристаллы; после обработки - бриллианты. Добывают из россыпей и коренных месторождений. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность = 2 г/см). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Химические свойства. Химические свойства углерода обычно рассматриваются на примере графита или углей, поскольку алмаз химически неактивен. Углерод малоактивное вещество и в реакции вступает при нагревании или поджигании, что связано с затратами энергии для разрушения кристаллической решетки.
Слайд 10

Химические свойства

Химические свойства углерода обычно рассматриваются на примере графита или углей, поскольку алмаз химически неактивен. Углерод малоактивное вещество и в реакции вступает при нагревании или поджигании, что связано с затратами энергии для разрушения кристаллической решетки.

1. Взаимодействие с водородом происходит при высокой температуре и наличии катализатора. Ni C + 2H2 = CH4 2. Взаимодействие с кислородом. При сгорании углей образуется диоксид углерода (СО2).. C + O2 = CO2 С + СО2 = 2СО (угарный газ) 3. Углерод непосредственно взаимодействует только с фтором. Соедин
Слайд 11

1. Взаимодействие с водородом происходит при высокой температуре и наличии катализатора. Ni C + 2H2 = CH4 2. Взаимодействие с кислородом. При сгорании углей образуется диоксид углерода (СО2).. C + O2 = CO2 С + СО2 = 2СО (угарный газ) 3. Углерод непосредственно взаимодействует только с фтором. Соединения с хлором, бромом, йодом получают косвенным путем. С + 2F2 = CF4 4. Углерод при нагревании соединяется с серой и азотом. C + 2S = CS2 (сероуглерод) 2C + N2 = (CN) 2 - дициан Сероуглерод является хорошим растворителем жиров, смол, лаков. 5. При высокой температуре углерод образует с металлами или их оксидами карбиды. 2C + Ca = CaC2 2Na + 2C = Na2C2 4Al + 3C = Al4C3 C + 3Fe = Fe3C CaO + 3C = CaC2 + CO2 Al2O3+ 9C = Al4C3 + 6CO

6. При нагревании углерод окисляется азотной и конц. серной кислотами, хотя на холоду устойчив к действию этих и других кислот. C + 2H2SO4(конц.) = CO2 + 2SO2 + 2H2O 3C + 4HNO3(разб.) = 3CO2 + 4NO + 2H2O 7. Уголь при нагревании проявляет сильные восстановительные свойства, что используется в металлу
Слайд 12

6. При нагревании углерод окисляется азотной и конц. серной кислотами, хотя на холоду устойчив к действию этих и других кислот. C + 2H2SO4(конц.) = CO2 + 2SO2 + 2H2O 3C + 4HNO3(разб.) = 3CO2 + 4NO + 2H2O 7. Уголь при нагревании проявляет сильные восстановительные свойства, что используется в металлургии. Восстановителем является как сам углерод, так и,образующийся при сгорании угля,монооксид углерода. Fe3O4 + 2C = 3Fe + 2CO2 2ZnO + C = 2Zn + CO2 MnO2 + C = Mn + CO2 BaSO4 + 2C = BaS + 2CO2 SiO2+ C = Si + CO2 Ca3(PO4) 2+ 10C + 6SiO2 = P4 + 6CaSiO3+ 10CO 8. При высокой температуре (1000o C) уголь разлагает воду: С + H2O = CO + H2

Углерод в организме. Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически акти
Слайд 13

Углерод в организме

Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

Нахождение в природе. В природе углерод встречается в виде: алмаза карбина графита в соединениях – в виде каменного и бурого углей и нефти. Входит в состав природных карбонатов: известняка, мрамора, мела CaCO3, доломита CaCO3 *MgCO3. Является важной составной частью органических веществ.
Слайд 14

Нахождение в природе

В природе углерод встречается в виде: алмаза карбина графита в соединениях – в виде каменного и бурого углей и нефти. Входит в состав природных карбонатов: известняка, мрамора, мела CaCO3, доломита CaCO3 *MgCO3. Является важной составной частью органических веществ.

Применение. Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах. Алмаз. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в
Слайд 15

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах. Алмаз. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области. В фармакологии и медицине широко используются различные соединения углерода — производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен(активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) — для лечения кожных заболеваний; радиоактивные изотопы углерода — для научных исследований (радиоуглеродный анализ).

Кремний
Слайд 16

Кремний

получение. Основным способом получения кремния является восстановление из диоксида кремния, а наиболее чистый кремний - восстановлением SiCl4. SiO2 + 2C = Si + 2CO 3SiO2 + 4Al = 3Si + 2Al2O3 SiO2 + 2Mg = Si + 2MgO SiCl4 + 2Zn = Si + 2ZnCl2
Слайд 17

получение

Основным способом получения кремния является восстановление из диоксида кремния, а наиболее чистый кремний - восстановлением SiCl4. SiO2 + 2C = Si + 2CO 3SiO2 + 4Al = 3Si + 2Al2O3 SiO2 + 2Mg = Si + 2MgO SiCl4 + 2Zn = Si + 2ZnCl2

Кремний - широко распространённый элемент в природе. В земной коре его 27.6%. Технология получения его отличается от технологии получения германия. Исходное сырьё в виде двуокиси кремния широко распространено в природе. Из кремнезёма в дуговых электрических печах путём восстановления его углеродом к
Слайд 18

Кремний - широко распространённый элемент в природе. В земной коре его 27.6%. Технология получения его отличается от технологии получения германия. Исходное сырьё в виде двуокиси кремния широко распространено в природе. Из кремнезёма в дуговых электрических печах путём восстановления его углеродом кокса получают кремний чистотой до 97%. Кристаллический кремний - темно-серое вещество с металлическим блеском.

Кремний довольно инертное вещество и его химическая активность проявляется преимущественно при высоких температурах. 1.Кремний взаимодействует с кислородом при 400-500 С, а с водородом - при 3000 оC Si + O2 = SiO2 Si + 2H2 = SiH4 (cилан) 2. Кремний взаимодействует с фтором при обычной температуре, а
Слайд 19

Кремний довольно инертное вещество и его химическая активность проявляется преимущественно при высоких температурах. 1.Кремний взаимодействует с кислородом при 400-500 С, а с водородом - при 3000 оC Si + O2 = SiO2 Si + 2H2 = SiH4 (cилан) 2. Кремний взаимодействует с фтором при обычной температуре, а с остальными галогенами при нагревании. Si + 2F2 = SiF4 Si + 2Cl2= SiCl4 Si + 2Br2 = SiBr4 Галогениды кремния гидролизуются водой с образованием кремневой кислоты или диоксида кремния (если гидролиз идет при нагревании). SiСl4 + 3H2O = H2SiO3 + 4HCl SiCl4 + 2H2O = 4HCl + SiO2 3. Взаимодействие с другими неметаллами также идет при нагревании: Si + 2S = SiS2 3Si + 2N2 = Si3N4 Si + C = SiC

4. При нагревании кремния с металлами образуются силициды. Силициды разлагаются водой и кислотами с образованием силана (основной способ получения силана). Силан горит и разлагается щелочью. 2Ca + Si = Ca2Si 2Mg + Si = Mg2Si Сa2Si + 4HCl = 2CaCl2 + SiH4 Сa2Si + 4H2O = 2Ca(OH) 2+ SiH4 SiH4 + 2О2 = Si
Слайд 20

4. При нагревании кремния с металлами образуются силициды. Силициды разлагаются водой и кислотами с образованием силана (основной способ получения силана). Силан горит и разлагается щелочью. 2Ca + Si = Ca2Si 2Mg + Si = Mg2Si Сa2Si + 4HCl = 2CaCl2 + SiH4 Сa2Si + 4H2O = 2Ca(OH) 2+ SiH4 SiH4 + 2О2 = SiO2 + 2H2O SiH4 + 2NaOH + H2O = Na2SiO3 + 4H2 5. Кислоты, кроме плавиковой, на кремний не действуют, в щелочах кремний растворяется с выделением водорода. Si + 4HF = SiF4 + 2H2 Si + 2NaOH + H2O = Na2SiO3 + 2H2 6. При нагревании кремний разлагает воду. Si + 2H2O = SiO2 + 2H2

Кремний после кислорода — самый распространенный элемент в земной коре. В отличие от углерода в свободном состоянии кремний в природе не встречается. Наиболее распространенными его соединениями являются оксид кремния (IV) SiO2 и соли кремниевых кислот — силикаты. Они образуют оболочку земной коры. С
Слайд 21

Кремний после кислорода — самый распространенный элемент в земной коре. В отличие от углерода в свободном состоянии кремний в природе не встречается. Наиболее распространенными его соединениями являются оксид кремния (IV) SiO2 и соли кремниевых кислот — силикаты. Они образуют оболочку земной коры. Соединения кремния содержатся в организмах растений и животных. состав некоторых природных силикатов: полевой шпат К2О× Аl2O3× 6SiO2, асбест 3MgО× 2SiO2× 2H2O, cлюда К2О× 3Аl2O3× 6SiO2× 2H2O, каолинит 3Аl2O3× 2SiO2× 2H2O. Силикаты, содержащие в своем составе также оксид алюминия, называются алюмосиликатами- полевой шпат, каолинит и слюда. Граниты и гнейсы — состоят из кристалликов кварца, полевого шпата и слюды.

применение. Технический кремний находит следующие применения: сырьё для металлургических производств: компонент сплава (бронзы, силумин); раскислитель (при выплавке чугуна); модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве транс
Слайд 22

применение

Технический кремний находит следующие применения: сырьё для металлургических производств: компонент сплава (бронзы, силумин); раскислитель (при выплавке чугуна); модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей, сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»); сырьё для производства кремнийорганических материалов, силанов; иногда кремний технической чистоты и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях; для производства солнечных батарей.

Германий, олово, свинец
Слайд 23

Германий, олово, свинец

германий. Твёрдое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Даже весьма чист
Слайд 24

германий

Твёрдое вещество серо-белого цвета с металлическим блеском. Природный Германий представляет собой смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76.

Германий кристаллизуется в кубической структуре типа алмаза, параметр элементарной ячейки а = 5, 6575Å. Даже весьма чистый Германий хрупок при обычной температуре, но выше 550°С поддается пластической деформации. Германий - типичный полупроводник с шириной запрещенной зоны 1,104·10-19дж или 0,69 эв (25°С); Прозрачен для инфракрасных лучей с длиной волны больше 2 мкм.

олово. Олово при нормальных условиях — мягкий, ковкий, пластичный металл серебристо-белого цвета. Обладая высокой мягкостью и тягучестью, олово может быть прокатано в тонкие листы, которые называют оловянной фольгой или станиолем.
Слайд 25

олово

Олово при нормальных условиях — мягкий, ковкий, пластичный металл серебристо-белого цвета. Обладая высокой мягкостью и тягучестью, олово может быть прокатано в тонкие листы, которые называют оловянной фольгой или станиолем.

свинец. Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.
Слайд 26

свинец

Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.

ГЕРМАНИЙ встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °С до простого вещества: Ge
Слайд 27

ГЕРМАНИЙ встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °С до простого вещества: GeO2+ 2H2= Ge + 2H2O.Очистка и выращивание монокристалов германия производится методом зонной плавки( метод очистки твёрдых веществ, основанный на различной растворимости примесей в твердой и жидкой фазах). СВИНЕЦ. Основной источник – сульфидные полиметаллические руды, содержащие от 1 до 5% свинца. Руду концентрируют до содержания свинца 40 – 75%, затем подвергают обжигу: 2PbS + 3O2 = 2PbO + 2SO2 и восстанавливают свинец коксом и оксидом углерода(II) ОЛОВО. Промышленное получение целесообразно, если содержание его в россыпях 0,01% , в рудах 0,1%; обычно же десятые и единицы процентов. Олову в рудах часто сопутствуют W, Zr, Cs, Rb, редкоземельные элементы, Та, Nb и другие ценные металлы. Первичное сырье обогащают: россыпи - преимущественно гравитацией, руды - также флотогравитацией или флотацией.

СВИНЕЦ. Содержание в земной коре 1,6·10-3% по массе. Самородный свинец встречается редко. В природе известно 180 минералов свинца. Основные — галенит PbS и продукты его химических превращений — англезит PbSO4 и церуссит PbCO3. Реже встречаются пироморфит PbCl2·3Pb32, миметит PbCl2·3Pb32, крокоит PbC
Слайд 28

СВИНЕЦ. Содержание в земной коре 1,6·10-3% по массе. Самородный свинец встречается редко. В природе известно 180 минералов свинца. Основные — галенит PbS и продукты его химических превращений — англезит PbSO4 и церуссит PbCO3. Реже встречаются пироморфит PbCl2·3Pb32, миметит PbCl2·3Pb32, крокоит PbCrO4, вульфенит PbMoO4, штольцит PbWO4. В свинцовых рудах часто находятся также другие металлы — медь, цинк, кадмий, серебро, золото, висмут и др. ОЛОВО— редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10−4 до 8·10−3 % по массе. Основной минерал олова — касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) — Cu2FeSnS4 (27,5 % Sn). ГЕРМАНИЙ. Общее содержание в земной коре7×10−4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др. Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти.

При нагревании реагируют с кислородом, серой, хлором, не реагируют с водородом, углеродом, азотом. 2Pb + O2 = 2PbO; Ge + 2S = GeS2; Sn + 2Cl2 = SnCl4 Германий и олово с водой не взаимодействуют.Свинец медленно растворяется в воде: 2Pb + O2 + 2H2O = 2Pb(OH)2 . В ряду активности Ge стоит между Cu и Ag
Слайд 29

При нагревании реагируют с кислородом, серой, хлором, не реагируют с водородом, углеродом, азотом. 2Pb + O2 = 2PbO; Ge + 2S = GeS2; Sn + 2Cl2 = SnCl4 Германий и олово с водой не взаимодействуют.Свинец медленно растворяется в воде: 2Pb + O2 + 2H2O = 2Pb(OH)2 . В ряду активности Ge стоит между Cu и Ag, т.е. после водорода, а Sn и Pb до водорода. Олово взаимодействуя с разбавленными кислотами вяло вытесняет водород: Sn + H2SO4 (pазб) = SnSO4 + H2  Sn + 2HCl = SnCl2 + H2  Все три элемента взаимодействуют со щелочами (германий в присутствии окислителя): Sn + 2NaOH + 2H2O = Na2[Sn(OH)4] + H2  Ge + 2NaOH + 2H2O2 = Na2[Ge(OH)6]

С кислородом Ge, Sn, Pb дают два ряда оксидов и гидроксидов (валентности II и IV). SnO + 2HCl = SnCl2 + H2O SnO + 2NaOH = Na2SnO2 + H2O Гидроксиды (II) получают взаимодействием соли со щелочью: SnCl2 + 2NaOH = Sn(OH)2 ↓ + 2NaCl. При избытке щелочи гидроксиды, выпавшие в осадок растворяются: Sn(OH)2
Слайд 30

С кислородом Ge, Sn, Pb дают два ряда оксидов и гидроксидов (валентности II и IV). SnO + 2HCl = SnCl2 + H2O SnO + 2NaOH = Na2SnO2 + H2O Гидроксиды (II) получают взаимодействием соли со щелочью: SnCl2 + 2NaOH = Sn(OH)2 ↓ + 2NaCl. При избытке щелочи гидроксиды, выпавшие в осадок растворяются: Sn(OH)2 + 2NaOH = Na2[Sn(OH)4] Оксид свинца PbO2 можно получить по реакции: Pb(CH3COO)2 + CaOCl2 + H2O = PbO2↓ + CaCl2 + 2CH3COOH Все три оксида проявляют амфотерные свойства, но кислотная функция у них выражена сильнее, чем у оксидов в низшей степени окисления. Существует смешанный оксид свинца Pb3O4 – свинцовый сурик, нерастворимый в воде порошок красивого ярко-оранжевого цвета. При взаимодействии этого оксида с разбавленной азотной кислотой образуются двухвалентный нитрат свинца и диоксид свинца: Pb3O4 + 4HNO3 = PbO2 ↓ + 2Pb(NO3)2 + 2H2O Гидроксиды (IV) можно получить при действии на соли четырехвалентных металлов щелочью: SnCl4 + 2NaOH = Sn(OH)4 ↓ + 2NaCl Гидроксиды (IV) амфотерны: Sn(OH)4 + H2SO4 = Sn(SO4)2 + H2O Sn(OH)4 + 2NaOH = Na2[Sn(OH6)]

Оловянная чума. Есть у олова свойство, которое называют «оловянной чумой». Металл «простужается» на морозе уже при -13°С и начинает постепенно разрушаться. При температуре -33 °С свойство прогрессирует с невероятной быстротой — оловянные изделия превращаются в серый порошок. Именно из-за оловянной ч
Слайд 31

Оловянная чума

Есть у олова свойство, которое называют «оловянной чумой». Металл «простужается» на морозе уже при -13°С и начинает постепенно разрушаться. При температуре -33 °С свойство прогрессирует с невероятной быстротой — оловянные изделия превращаются в серый порошок. Именно из-за оловянной чумы до нас не дошли известнейшие коллекции оловянных солдатиков из прошлого. Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.

Применение германия. полупроводниковая техника,используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. инфракрасная техника, в частности производство дет
Слайд 32

Применение германия

полупроводниковая техника,используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. в дозиметрических приборах и приборах, измеряющих напряженность постоянных и переменных магнитных полей. инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мкм. стекла на основе GeO2

Применение олова. безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами изготовления тары пищевых продуктов известный сплав — пьютер — используется для изготовления посуды. используется для создания сверхпроводящих проводов на основе интерметаллического
Слайд 33

Применение олова

безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами изготовления тары пищевых продуктов известный сплав — пьютер — используется для изготовления посуды. используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn. двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.

оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски. в химических источниках тока в качестве анодного материала перспективно использование олова в свинцово-олов
Слайд 34

оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски. в химических источниках тока в качестве анодного материала перспективно использование олова в свинцово-оловянном аккумуляторе олово имеет непосредственное отношение к рождению мелодичных звуков в самых различных колоколах, поскольку оно входит в состав медных сплавов, применяемых для их отливки. защита древесины от гниения, уничтожение насекомых-вредителей и многое другое.

Применение свинца. в производстве свинцовых аккумуляторов. свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). изготовление оболочек элек
Слайд 35

Применение свинца

в производстве свинцовых аккумуляторов. свинец сильно поглощает γ-лучи и рентгеновские лучи, благодаря чему его применяют как материал для защиты от их действия (контейнеры для хранения радиоактивных веществ, аппаратура рентгеновских кабинетов и других). изготовление оболочек электрических кабелей, защищающих их от коррозии и механических повреждений. оксид Свинца РbО вводят в хрусталь и оптическое стекло для получения материалов с большим показателем преломления

Список похожих презентаций

Элементы v группы, главной подгруппы периодической системе элементов Д.И Менделеева

Элементы v группы, главной подгруппы периодической системе элементов Д.И Менделеева

Азот (N) 2s22p3 Фосфор (P) 3s23p3 Мышьяк (As) 3d104s24p3 Сурьма (Sb) 4d105s25p3 Висмут (Bi) 4f145d106s26p3. Электронное строение:. уменьшаются. Степени ...
Элементы первой группы главной подгруппы

Элементы первой группы главной подгруппы

Щелочные металлы – это элементы главной подгруппы I группы Периодической системы химических элементов Д. И. Менделеева: литий Li, натрий Na, калий ...
Система цитокинов. Методы оценки системы цитокинов.

Система цитокинов. Методы оценки системы цитокинов.

Ответ клетки на влияние цитокинов зависит от нескольких факторов: - от типа клеток и их исходной функциональной активности, - от локальной концентрации ...
Роль Банковской системы в экономике России.

Роль Банковской системы в экономике России.

Содержание:. Что такое банк? История возникновения Формирование современной банковской системы Центральный банк Коммерческие банки Деятельность ЦБ ...
Развитие репродуктивной системы женщины

Развитие репродуктивной системы женщины

Формирование репродуктивной системы начинается в антенатальном периоде (антенатальный период - период внутриутробного развития плода от момента образования ...
Правовые системы Скандинавии

Правовые системы Скандинавии

Особенности скандинавской правовой системы: сходство с Р-Г ПС. Сходство источников правового регулирования: закон – основной источник права второстепенная ...
Пороки развития дыхательной системы

Пороки развития дыхательной системы

На практике при вскрытии у 30 % экзетированных новорожденных обнаруживается аномалии развития органов дыхания. Но не все аномалии развития органов ...
Физиологические особенностипитания и пищеварительной системы собак и кошек.

Физиологические особенностипитания и пищеварительной системы собак и кошек.

Cобака – это не человек, а кошка это не маленькая собака. тип питания: у человека всеядное, собак и кошка плотоядное животное; требование к балансу ...
Бланки строгой и нестрогой отчетности проездных документов системы «Экспресс»

Бланки строгой и нестрогой отчетности проездных документов системы «Экспресс»

Бланки строгой отчетности. Проездной документ. Данный документ состоит их 3 слипов. 1 слип «Проездной документ». 2 слип «Контрольный купон». 3 слип ...
Аптека как розничное звено системы доведения ЛС до потребителя

Аптека как розничное звено системы доведения ЛС до потребителя

Фармацевтическая деятельность. деятельность, включающая в себя оптовую торговлю лекарственными средствами, хранение ЛС, перевозку ЛС и/или розничную ...
Аномалии развития женской половой системы

Аномалии развития женской половой системы

Двурогая, двуполостная матка: два отдельных тела имеют общую шейку; макропрепарат. Матка, удвоенная на всем протяжении; макропрепарат. Эндометриальная ...
Анатомия мужской половой системы

Анатомия мужской половой системы

К мужским половым органам относятся:. Внутренние половые органы: Яички и придатки Семявыносящие и семявыбрасывающие протоки Семенные пузырьки Предстательная ...
Анатомия и физиология мужской репродуктивной системы

Анатомия и физиология мужской репродуктивной системы

По мнению многих исследователей мужская репродуктивная система устроена значительно сложнее женской и является очень точным маркером любого патологического ...
Анализ воспитательной системы В.А Сухомлинского (1918–1970)

Анализ воспитательной системы В.А Сухомлинского (1918–1970)

Годы жизни 1918- 1970 1926-1933 гг. - учился в Васильевской семилетке 1934 г. поступил на подготовительные курсы при Кременчугском педагогическом ...
Современные операционные системы

Современные операционные системы

Компьютеры и мобильные устройства становятся все более мощными, поэтому операционные системы должны за ними успевать, ведь именно они обеспечивают ...
Строение опорно-двигательной системы человека

Строение опорно-двигательной системы человека

Скелет состоит примерно из 200 костей. Кости выполняют функцию рычагов и защищают органы от травм. Кости участвуют в обмене фосфора и кальция. Скелет. ...
Введение в базы данных (БД) и системы управления базами данных (СУБД)

Введение в базы данных (БД) и системы управления базами данных (СУБД)

Ресурсы. http://www.sql-ex.ru/ http://www.mstu.edu.ru/study/materials/zelenkov/toc.html http://citforum.ru/database/edu.shtml. Почему (для чего) используют ...
Экспертные системы и базы знаний

Экспертные системы и базы знаний

Основные понятия управления проектами Проектом называется совокупность распределённых во времени мероприятий или работ, направленных на достижение ...
Введение в изучение сердечно-сосудистой системы

Введение в изучение сердечно-сосудистой системы

План лекции:. Структура сердечно-сосудистой системы. Общая анатомия кровеносных сосудов. Микроциркуляторное русло. Учение о коллатеральном кровообращении. ...
Понятие и общая характеристика судебной системы Российской Федерации

Понятие и общая характеристика судебной системы Российской Федерации

Вопросы: Понятие и состав судебной системы РФ Звено и инстанция судебной системы РФ. Литература: 1. Правоохранительные органы в схемах с комментариями ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:13 апреля 2019
Категория:Разные
Содержит:35 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации