Презентация "Усеченный конус" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35

Презентацию на тему "Усеченный конус" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 35 слайд(ов).

Слайды презентации

Усеченный конус. МОУ СОШ №256 г.Фокино
Слайд 1

Усеченный конус.

МОУ СОШ №256 г.Фокино

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.
Слайд 2

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса.

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.
Слайд 3

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями.

Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса? 8 ?
Слайд 4

Пусть в конусе, высота которого известна, проведено сечение, находящееся на расстоянии три от вершины. Чему равна образующая получившегося усеченного конуса, если известна образующая полного конуса?

8 ?

Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.
Слайд 5

Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.
Слайд 6

Пусть дан усеченный конус, радиусы оснований и высота которого известны. Найдите образующую усеченного конуса.

Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.
Слайд 7

Прямая, соединяющая центры оснований, называется осью усеченного конуса. Сечение, проходящее через ось, называется осевым. Осевое сечение является равнобедренной трапецией.

Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая. 36
Слайд 8

Найдите площадь осевого сечения, если известны радиус нижнего основания, высота и образующая.

36

Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса. Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.
Слайд 9

Боковая поверхность усеченного конуса. Площадь боковой поверхности усеченного конуса.

Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

Доказательство: Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.
Слайд 10

Доказательство:

Боковую поверхность усеченного конуса будем понимать как предел, к которому стремится боковая поверхность вписанной в этот конус правильной усеченной пирамиды, когда число боковых граней неограниченно увеличивается.

Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.
Слайд 11

Впишем в конус правильную пирамиду. Ее боковая поверхность состоит из трапеций.

Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца. Замечание:
Слайд 12

Площадь боковой поверхности усеченного конуса можно рассматривать как разность между площадями боковых поверхностей двух конусов. Поэтому развертка усеченного конуса – это часть круглого кольца.

Замечание:

Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.
Слайд 13

Усеченный конус получен от вращения прямоугольной трапеции вокруг боковой стороны, перпендикулярной основаниям, Найдите площадь боковой поверхности усеченного конуса, если известны основания и боковая сторона трапеции.

Задача. Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов.
Слайд 14

Задача.

Радиус меньшего основания усеченного конуса равен 5, высота равна 6, а расстояние от центра меньшего основания до окружности большего основания равно 10. Найдите площадь боковых поверхностей усеченного и полного конусов.

Достроим усеченный конус до полного и проведем осевое сечение. Решение:
Слайд 15

Достроим усеченный конус до полного и проведем осевое сечение.

Решение:

1) Вычислим радиус большего основания.
Слайд 16

1) Вычислим радиус большего основания.

2) Найдем боковую сторону трапеции –образующую усеченного конуса.
Слайд 17

2) Найдем боковую сторону трапеции –образующую усеченного конуса.

3) Используя подобие треугольников, найдем образующую полного конуса. ~
Слайд 18

3) Используя подобие треугольников, найдем образующую полного конуса.

~

4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.
Слайд 19

4) Подставим найденные значения в формулы для площадей боковой поверхности полного и усеченного конусов.

Формула объема усеченного конуса. Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и ни
Слайд 20

Формула объема усеченного конуса.

Объем усеченного конуса равен сумме объемов трех конусов, имеющих одинаковую высоту с усеченным конусом, а основаниями: один – нижнее основание этого конуса, другой – верхнее, а третий – круг, радиус которого есть среднее геометрическое между радиусами верхнего и нижнего оснований.

Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов.
Слайд 21

Поместим на верхнем основании усеченного конуса малый конус, дополняющий его до полного и рассмотрим объем его как разность объемов двух конусов.

Вычислим высоту полного конуса из подобия треугольников.
Слайд 22

Вычислим высоту полного конуса из подобия треугольников.

Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.
Слайд 23

Объемы полного и дополнительного конусов относятся как кубы радиусов оснований.

Вычтем из объема большого конуса объем малого конуса.
Слайд 24

Вычтем из объема большого конуса объем малого конуса.

Найдите объем усеченного конуса, если известны его высота и радиусы оснований. 149π
Слайд 25

Найдите объем усеченного конуса, если известны его высота и радиусы оснований.

149π

Подобные цилиндры и конусы. Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников.
Слайд 26

Подобные цилиндры и конусы.

Подобные цилиндры или конусы можно рассматривать как тела, полученные от вращения подобных прямоугольников или прямоугольных треугольников.

Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.
Слайд 27

Сечение, параллельное основанию конуса, отсекает от него малый конус, подобный большому.

В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?
Слайд 28

В цилиндре проведено сечение, параллельное основанию. Будет ли малый цилиндр, который отсекается этим сечением, подобен большому?

Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.
Слайд 29

Площади боковых поверхностей подобных цилиндров и конусов относятся как квадраты радиусов или высот, а объемы – как кубы радиусов или высот.

В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение? 2
Слайд 30

В конусе, высота которого известна, проведено сечение, параллельное основанию. Известно также соотношение объемов малого и большого конусов. На каком расстоянии от основания находится сечение?

2

Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.
Слайд 31

Радиусы оснований усеченного конуса относятся как 2:3. Высота конуса разделена на три равные части, и через точки деления проведены плоскости, параллельные основаниям. Найти, в каком отношении разделился объем усеченного конуса.

Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса.
Слайд 32

Зная, что радиусы оснований конуса относятся как два к трем, обозначим радиусы как 2а и 3а и рассмотрим осевое сечение конуса.

1) Используя подобие, найдем радиусы проведенных сечений.
Слайд 33

1) Используя подобие, найдем радиусы проведенных сечений.

2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы. V – объем наибольшего конуса
Слайд 34

2) Достроив усеченный конус до полного, найдем, какую часть от полного конуса составляют меньшие конусы.

V – объем наибольшего конуса

3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов. Ответ: V1 :V2 :V3 = 127 : 168 : 217
Слайд 35

3) Определим, какую часть от объема полного конуса составляют усеченные конусы, расположенные между соседними сечениями и найдем отношение объемов этих конусов.

Ответ: V1 :V2 :V3 = 127 : 168 : 217

Список похожих презентаций

Цилиндр, шар, конус

Цилиндр, шар, конус

Тело, ограниченное цилиндрической поверхностью и двумя кругами, называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра. ...
шар цилиндр конус

шар цилиндр конус

Что такое «стереометрия»? Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, пространственный» и μετρέω — «измеряю») — это раздел геометрии, ...
Урок конус

Урок конус

Цель урока. Учащиеся знают определение конуса, умеют выделять его элементы, знают формулы объема, боковой и полной поверхности конуса и понимают вывод ...

Конспекты

Усеченный конус

Усеченный конус

Методическая разработка. Урока геометрии в 11 классе. «Усеченный конус». По учебнику геометрии 10-11 класс. под ред. Л.С. Атанасян. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:неизвестен
Содержит:35 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации