Презентация "Видеоадаптеры" по информатике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Видеоадаптеры" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Информатика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

ВИДЕОАДАПТЕРЫ. Автор: Субхангулов И.И. Башкортостан Стерлитамак 2011
Слайд 1

ВИДЕОАДАПТЕРЫ

Автор: Субхангулов И.И.

Башкортостан Стерлитамак 2011

История видеоадаптеров. В 1981 году для IBM PC был разработан первый видеоадаптер - MDA (Monochrome Display Adapter). Он работал только в текстовом режиме с разрешением 720×350 пикселей. Цветовой или графической информации он передавать не мог. Обычно символы были чёрно-белыми, янтарными или изумруд
Слайд 2

История видеоадаптеров

В 1981 году для IBM PC был разработан первый видеоадаптер - MDA (Monochrome Display Adapter). Он работал только в текстовом режиме с разрешением 720×350 пикселей. Цветовой или графической информации он передавать не мог. Обычно символы были чёрно-белыми, янтарными или изумрудными. Первой цветной видеоплатой стала CGA (Color Graphics Adapter), выпущенная компанией IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40×25 и 80×25, либо в графическом с разрешениями 320×200 или 640×200 пикселей. Затем IBM разработала самый известный видеоадаптер - VGA (Video Graphics Array), дальшейшее развитие MCGA, совместимое с EGA. Были добавлены текстовое разрешение 720x400 и графический режим 640x480. Этот режим примечателен тем, что в нём используется квадратный пиксель, т.е. соотношение числа пикселей по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана — 4:3. Графический интерфейс, появившийся в операционных системах, стимулировал новый этап развития видеоплат. Появилось понятие «графический ускоритель» - это видеоадаптер, который способен выполнять некоторые графические функции на аппаратном уровне. К числу таких функций относятся: перемещение больших блоков изображения из одного участка экрана в другой, заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора.

Назначение видеокарты. Видеокарта - устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора. Обычно видеокарта является платой расширения и вставляется в разъём расширения PCI-Express, но бывает и встроенной (интегрированной) в системную плату (как в виде о
Слайд 3

Назначение видеокарты

Видеокарта - устройство, преобразующее изображение, находящееся в памяти компьютера, в видеосигнал для монитора. Обычно видеокарта является платой расширения и вставляется в разъём расширения PCI-Express, но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ). Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера.

Производители графических процессоров
Слайд 4

Производители графических процессоров

Производители видеокарт
Слайд 5

Производители видеокарт

Устройство видеокарты. Графический процессор (Graphics processing unit) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстроде
Слайд 6

Устройство видеокарты

Графический процессор (Graphics processing unit) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Видеопамять — выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора. В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные.

Цифро-аналоговый преобразователь (ЦАП, RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на монитор. Мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, д
Слайд 7

Цифро-аналоговый преобразователь (ЦАП, RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на монитор. Мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят. Видео ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы.

Технические параметры видеоадаптера. При выборе видеокарты необходимо руководствоваться параметрами: количество универсальных процессоров - тактовая частота ядра - объём памяти тип видеопамяти шина памяти интерфейс выводы на видеокарте - поддержка DirectX, версия шейдеров, OpenGL
Слайд 8

Технические параметры видеоадаптера

При выборе видеокарты необходимо руководствоваться параметрами: количество универсальных процессоров - тактовая частота ядра - объём памяти тип видеопамяти шина памяти интерфейс выводы на видеокарте - поддержка DirectX, версия шейдеров, OpenGL

Количество универсальных процессоров и тактовая частота ядра. Первоначально всю работу по формированию изображения брал на себя центральный процессор. Потом часть наиболее часто встречающихся и ресурсоемких операций по текстурированию стала брать на себя видеокатрта. В GeForce на видеокарту была воз
Слайд 9

Количество универсальных процессоров и тактовая частота ядра

Первоначально всю работу по формированию изображения брал на себя центральный процессор. Потом часть наиболее часто встречающихся и ресурсоемких операций по текстурированию стала брать на себя видеокатрта. В GeForce на видеокарту была возложена обязанность не только текстурирования, но и обработки геометрических данных. Таким образом в видеокарте появились два блока: для обработки вершин и для обработки пикселей (текстурирования). Дальней шее развитие видеокарт привело к тому, что кроме фиксированного набора операций эти блоки стали уметь выполнять простейшие программы, называемые шейдерами. Постепенно вычислительные блоки совершенствовались и становились все больше похожи на универсальные процессоры. Вот тогда и возникла идея их объединить. Если раньше вершины обрабатывались вершинными шейдерными блоками, а текстуры - пиксельными, то теперь все они стали обрабатываться универсальными. Соответственно, чем больше универсальных процессоров в видеокарте, тем больше вершин или пикселей она может обработать одновременно и выше ее производительность. Графический процессор также имеет свою тактовую частоту, соотвественно, чем выше частота процесора тем производительнее видеоадаптер.

Объем и тип видеопамяти. Под видеопамятью подразумевается какая-либо часть выделенной оперативной памяти, используемая для построения изображения на мониторе вашего компьютера. Чипы видеопамяти припаяны прямо к плате видеокарты, в отличие от съёмных модулей системной памяти, которые вставляются в ст
Слайд 10

Объем и тип видеопамяти

Под видеопамятью подразумевается какая-либо часть выделенной оперативной памяти, используемая для построения изображения на мониторе вашего компьютера. Чипы видеопамяти припаяны прямо к плате видеокарты, в отличие от съёмных модулей системной памяти, которые вставляются в стандартизированные разъёмы материнских плат. Одна половина чипов, обычно, припаяна под радиатором системы охлаждения видеокарты, а вторая — с обратной стороны. Чипы памяти представляют собой небольшие прямоугольные пластинки чёрного цвета. Видеопамять используется только под нужды различных графических приложений и игр. Технологии производства ОЗУ видеокарт развиваются более стремительно, чем ОЗУ для персональных компьютеров, в связи с тем, что игровая индустрия никогда не стоит на месте. Чем выше объем видеопамяти, тем предпочтительнее выглядит та или иная видеокарта. Тем не менее одним лишь этим принципом руководствоваться не следует. Важно подобрать такую видеокарту, объем видеопамяти которой будет соответствовать ее графическому процессору. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа GDDR3, GDDR4, GDDR5.

Шина памяти. Разрядность измеряется в битах и представлена следующей линейкой: 32-бита, 64-бита, 128-бит, 192-бита, 256-бит, 320-бит, 384-бита, 448-бит и 512-бит. Чем выше приведенное значение, тем мощнее будет выглядеть ваш персональный компьютер. Оптимальным вариантом будет приобретение видеокарты
Слайд 11

Шина памяти

Разрядность измеряется в битах и представлена следующей линейкой: 32-бита, 64-бита, 128-бит, 192-бита, 256-бит, 320-бит, 384-бита, 448-бит и 512-бит. Чем выше приведенное значение, тем мощнее будет выглядеть ваш персональный компьютер. Оптимальным вариантом будет приобретение видеокарты с шириной шины памяти от 256-бит. Также производительность системы будет зависеть от соответствия разрядности шины памяти и ее типа. Подобное соотношение играет более важную роль, чем объем видеопамяти.

Интерфейс. PCI Express или PCI-E — разъем для подключения видеоадаптера. Увеличенная пропускная способность — спецификация PCI Express 2.0 определяет максимальную пропускную способность одного соединения как 5 Гбит/с.
Слайд 12

Интерфейс

PCI Express или PCI-E — разъем для подключения видеоадаптера. Увеличенная пропускная способность — спецификация PCI Express 2.0 определяет максимальную пропускную способность одного соединения как 5 Гбит/с.

Выводы на видеокарте. VGA, D-Sub (Video Graphics Array) — стандарт мониторов и видеоадаптеров. Выпущен IBM в 1987 году. VGA являлся последним стандартом, которому следовало большинство производителей видеоадаптеров. DVI (Digital Visual Interface) — стандарт на интерфейс и соответствующий разъём, пре
Слайд 13

Выводы на видеокарте

VGA, D-Sub (Video Graphics Array) — стандарт мониторов и видеоадаптеров. Выпущен IBM в 1987 году. VGA являлся последним стандартом, которому следовало большинство производителей видеоадаптеров.

DVI (Digital Visual Interface) — стандарт на интерфейс и соответствующий разъём, предназначенный для передачи видеоизображения на цифровые устройства отображения, такие как жидкокристаллические мониторы и проекторы.

Видеодрайвер. Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции инте
Слайд 14

Видеодрайвер

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Технологии SLI и CrossFire. Технологии CrossFire и SLI - возможность использования сразу нескольких видеокарт компаний «АТ1» и «NVIDIA», соответственно. Прежде чем купить два или более видеоадаптера с целью создания мощной системы, необходимо удостовериться, что приобретаемое оборудование поддержива
Слайд 15

Технологии SLI и CrossFire

Технологии CrossFire и SLI - возможность использования сразу нескольких видеокарт компаний «АТ1» и «NVIDIA», соответственно. Прежде чем купить два или более видеоадаптера с целью создания мощной системы, необходимо удостовериться, что приобретаемое оборудование поддерживает пред­ставленные режимы работы.

SLI - разработка компании «NVIDIA», позволяющая объединить усилия сразу нескольких устройств этой фирмы с целью повышения производительности работы системы. Scalable Link Interface (именно так расшифровывается SLI) достаточно требовательна к техническому обеспечению: материнская плата SLI с чипсетом NVIDIA (необходимо наличие двух и более портов PCI-Express), мощный и надежный блок питания, видеокарты GeForce с шиной PCI-Express и чипсетами одного семейства, соединитель (мост).

CrossFire - результат деятельности компании «ATI/AMD». Для создания системы необходимы: материнская плата с чипсетом Intel или AMD (обязательна поддержка режима CrossFire) и несколькими разъемами PCI Express х16, мощный и надежный блок питания, непосредственно видеокарты, поддерживающие технологию CrossFire.

Пассивное охлаждение видеокарты
Слайд 16

Пассивное охлаждение видеокарты

Активное охлаждение видеокарты
Слайд 17

Активное охлаждение видеокарты

Видеоадаптеры Слайд: 18
Слайд 18

Список похожих презентаций

Периферийные устройства ввода информации

Периферийные устройства ввода информации

Устройства ввода информации. Аппаратные средства для преобразования информации из формы понятной человеку, в форму, воспринимаемую компьютером. К ...
Основные устройства компьютера, их функции, взаимосвязь

Основные устройства компьютера, их функции, взаимосвязь

компьютер. Программная часть - software. Аппаратная часть - hardware. Компьютер – это универсальное устройство для хранения, обработки и передачи ...
Основные устройства персонального компьютера

Основные устройства персонального компьютера

ОРГАНИЗАЦИЯ ГИПЕРССЫЛОК Режим последовательного изучения учебного материала организован с помощью кнопок прокрутки Режим справочника: в процессе перемещения ...
Основные устройства внешней памяти

Основные устройства внешней памяти

Внешняя (долговременная) память. Это память, предназначенная для длительного хранения программ и данных. Целостность содержимого данной памяти не ...
Основные устройства компьютера

Основные устройства компьютера

Введение. Предмет обсуждения –ЭВМ. Тема: Основные устройства ЭВМ. Список изучаемых разделов:. 1.Микропроцессоры. 7.Клавиатура. 2.Дисплей. 8.Мышь. ...
Социальная информатика

Социальная информатика

Социальная информатика - это про что? Обратимся к предметной области Информатикa. Социальная информатика. Информационные ресурсы как фактор социально-экономического ...
Физика + информатика

Физика + информатика

? Цель работы на уроке: исследовать объект окружающей среды средствами информатики и физики. «Человек без всякого воображения может собирать факты, ...
Занимательный урок Фольклорная информатика

Занимательный урок Фольклорная информатика

Разделы. Компьютерные добавлялки Слова с компьютерной начинкой Слова, оснащенные компьютером Попробуй прочитай Компьютерные анаграммы Словесное сложение ...
Какой вред наносят человеку сотовые телефоны и компьютеры?

Какой вред наносят человеку сотовые телефоны и компьютеры?

А ЗНАЕТЕ ЛИ ВЫ. Какое действие оказывает сотовая связь на человека? Как защитить себя от воздействия электромагнитного поля? Что не защитит нас от ...
Внешние устройства компьютера

Внешние устройства компьютера

Устройства ввода: Клавиатура Мышь Сканер Графический планшет Световое перо микрофон. Устройства вывода Монитор Принтер Плоттер Колонки наушники. Клавиатура ...
Внешние устройства ЭВМ

Внешние устройства ЭВМ

Состав внешних устройств ЭВМ. Внешние устройства делятся на два вида: внешние ЗУ устройства ввода-вывода (УВВ): клавиатура, дисплей, принтер, мышь, ...
Внешние устройства компьютера

Внешние устройства компьютера

Устройства ввода. Что такое устройства ввода? Устройством ввода называется устройство, которое: позволяет человеку отдавать компьютеру команды и/или ...
Внешние запоминающие устройства

Внешние запоминающие устройства

Количество информации увеличивается, следовательно ВЗУ необходимо совершенствовать. ВЗУ – основной носитель и хранитель информации, который постоянно ...
Весёлая информатика

Весёлая информатика

Эпиграф. Ты лишь на старте, длинен путь. Но к цели он ведет. И мир компьютеров тебя, Быть может, увлечет. А. М. Хайт. Цель:. развитие интереса к предмету, ...
Прикладная информатика

Прикладная информатика

Профессиональный стандарт. Исследователь в сфере ИТ - Computer and Information Scientist, Research Программист - Computer Programmer Системный архитектор ...
Квантовые компьютеры

Квантовые компьютеры

Квантовый компьютер – гипотетическое вычислительное устройство, которое путем выполнения квантовых алгоритмов существенно использует при работе квантово ...
Социальная информатика

Социальная информатика

Социальная информатика - это наука, изучающая комплекс проблем, связанных с прохождением информационных процессов в социуме. Один из основоположников ...
Компьютерные устройства

Компьютерные устройства

1 Как называется устройство? Это устройство является периферийным устройством, аксессуаром, частью компьютера? 2 Как называется устройство? Это устройство ...
Специальные устройства компьютера

Специальные устройства компьютера

Модемы. аналоговые сигналы. цифровые коды 101001101. Модем – устройство для связи двух компьютеров с помощью телефонной линии. Модем (модулятор/демодулятор) ...
Компьютерные устройства

Компьютерные устройства

Классификация по внешнему виду. ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР. МОНОБЛОК НОУТБУК НЕТБУК ПЛАНШЕТНЫЙ ПК. Классификация по выполняемым задачам. ИГРОВОЙ ПК СЕРВЕР. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:5 августа 2018
Категория:Информатика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации