- Основы логики. Логические основы компьютера

Презентация "Основы логики. Логические основы компьютера" (11 класс) по информатике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Основы логики. Логические основы компьютера" (11 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Информатика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Основы логики. Логические основы компьютера
Слайд 1

Основы логики

Логические основы компьютера

Логика (др.-греч. λογική — «наука о рассуждении», «искусство рассуждения» от λόγος — «речь», «рассуждение», «мысль») — наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Логика изучает мышление как средство познания объективного
Слайд 2

Логика (др.-греч. λογική — «наука о рассуждении», «искусство рассуждения» от λόγος — «речь», «рассуждение», «мысль») — наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Логика изучает мышление как средство познания объективного мира. Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира.

Идеи и аппарат логики используется в кибернетике, вычислительной технике и электротехнике (построение компьютеров основано на законах математической логики). В основе логических схем и устройств ПК лежит специальный математический аппарат, использующий законы логики. Математическая логика изучает во
Слайд 3

Идеи и аппарат логики используется в кибернетике, вычислительной технике и электротехнике (построение компьютеров основано на законах математической логики). В основе логических схем и устройств ПК лежит специальный математический аппарат, использующий законы логики. Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем. Знание логики необходимо при разработке алгоритмов и программ, так как в большинстве языков программирования есть логические операции.

Алгебра логики – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. За
Слайд 4

Алгебра логики – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор).

Алгебра логики – математический аппарат, с помощью которого записывают, упрощают, вычисляют и преобразовывают логические высказывания. Высказывание – это повествовательное предложение, о котором можно сказать, что оно или истинно или ложно. Высказывание может принимать только одно из двух логических
Слайд 5

Алгебра логики – математический аппарат, с помощью которого записывают, упрощают, вычисляют и преобразовывают логические высказывания. Высказывание – это повествовательное предложение, о котором можно сказать, что оно или истинно или ложно. Высказывание может принимать только одно из двух логических значений: истина (1) или ложь (0).

Основы логики. Логические основы компьютера Слайд: 6
Слайд 6
Высказывание считается простым, если никакую его часть нельзя рассматривать как отдельное высказывание. Примеры: Земля - планета Солнечной системы (истинное) Рим — столица Франции (ложное)
Слайд 7

Высказывание считается простым, если никакую его часть нельзя рассматривать как отдельное высказывание. Примеры: Земля - планета Солнечной системы (истинное) Рим — столица Франции (ложное)

Сложное высказывание – высказывание, которое состоит из нескольких простых. Сложное высказывание получается путем объединения простых высказываний логическими связками — НЕ, И, ИЛИ. Пример: На улице светит солнце или на улице пасмурная погода.
Слайд 8

Сложное высказывание – высказывание, которое состоит из нескольких простых. Сложное высказывание получается путем объединения простых высказываний логическими связками — НЕ, И, ИЛИ. Пример: На улице светит солнце или на улице пасмурная погода.

В алгебре логики, как и в обычной алгебре, вводится ряд операций. Логические связки И, ИЛИ и НЕ заменяются логическими операциями: конъюнкцией, дизъюнкцией и инверсией. Это основные логические операции, при помощи которых можно записать любую логическую функцию.
Слайд 9

В алгебре логики, как и в обычной алгебре, вводится ряд операций. Логические связки И, ИЛИ и НЕ заменяются логическими операциями: конъюнкцией, дизъюнкцией и инверсией. Это основные логические операции, при помощи которых можно записать любую логическую функцию.

Инверсия (отрицание). Соответствует частице «не», означает «неверно». Обозначается черточкой над именем переменной или знаком ¬ перед переменной. Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна. Таблица истинности:
Слайд 10

Инверсия (отрицание). Соответствует частице «не», означает «неверно». Обозначается черточкой над именем переменной или знаком ¬ перед переменной. Инверсия логической переменной истинна, если сама переменная ложна, и, наоборот, инверсия ложна, если переменная истинна. Таблица истинности:

Дизъюнкция (логическое сложение). Соответствует союзу «или». Обозначается знаками «˅» или «+» или «║». Дизъюнкция двух логических переменных ложна тогда и только тогда, когда оба высказывания ложны. Таблица истинности
Слайд 11

Дизъюнкция (логическое сложение). Соответствует союзу «или». Обозначается знаками «˅» или «+» или «║». Дизъюнкция двух логических переменных ложна тогда и только тогда, когда оба высказывания ложны. Таблица истинности

Конъюнкция (логическое умножение). Соответствует союзу «и». Обозначается знаками «&» или «˄», или «·». Конъюнкция двух логических переменных истинна тогда и только тогда, когда оба высказывания истинны. Таблица истинности
Слайд 12

Конъюнкция (логическое умножение). Соответствует союзу «и». Обозначается знаками «&» или «˄», или «·». Конъюнкция двух логических переменных истинна тогда и только тогда, когда оба высказывания истинны. Таблица истинности

Импликация (логическое следование). Связывает два простых логических выражения, из которых первое является условием (А), а второе (В) – следствием из этого условия. Результатом импликации является ложь только тогда, когда условие А истинно, а следствие В ложно. Обозначается символами «→» или «=>»
Слайд 13

Импликация (логическое следование). Связывает два простых логических выражения, из которых первое является условием (А), а второе (В) – следствием из этого условия. Результатом импликации является ложь только тогда, когда условие А истинно, а следствие В ложно. Обозначается символами «→» или «=>» и выражается словами «если…, то». Таблица истинности

Эквиваленция (равнозначность). Определяет результат сравнения двух простых логических выражений А и В. Результатом эквиваленции является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символами «=», «
Слайд 14

Эквиваленция (равнозначность). Определяет результат сравнения двух простых логических выражений А и В. Результатом эквиваленции является новое логическое выражение, которое будет истинным тогда и только тогда, когда оба исходных выражения одновременно истинны или ложны. Обозначается символами «=», «↔», «». Таблица истинности

Логическая переменная – переменная, которая может принимать только 2 значения – 0 и 1. Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принима
Слайд 15

Логическая переменная – переменная, которая может принимать только 2 значения – 0 и 1. Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: истина (логическая 1) или ложь (логический 0).

Операции в логическом выражении выполняются слева направо с учетом скобок в следующем порядке: инверсия; конъюнкция; дизъюнкция; импликация и эквивалентность.
Слайд 16

Операции в логическом выражении выполняются слева направо с учетом скобок в следующем порядке: инверсия; конъюнкция; дизъюнкция; импликация и эквивалентность.

Равносильности формул логики высказываний часто называют законами логики. Законы логики отражают наиболее важные закономерно­сти логического мышления. В алгебре высказываний законы логики записываются в виде формул, которые позволяют проводить эквивалентные преобразования логических выражений в соот
Слайд 17

Равносильности формул логики высказываний часто называют законами логики. Законы логики отражают наиболее важные закономерно­сти логического мышления. В алгебре высказываний законы логики записываются в виде формул, которые позволяют проводить эквивалентные преобразования логических выражений в соответствие с законами логики. Знание законов логики позволяет проверять правильность рассуждений и доказательств. Нарушения этих законов приводят к логическим ошибкам и вытекающим из них противоречиям.

Закон тождества. Всякое высказывание тождественно самому себе: А=А. Этот закон сформулирован древнегреческим философом Аристотелем. Закон тождества утверждает, что мысль, заключенная в некотором высказывании, остается неизменной на протяжении всего рассуждения, в котором это высказывание фигурирует.
Слайд 18

Закон тождества. Всякое высказывание тождественно самому себе: А=А. Этот закон сформулирован древнегреческим философом Аристотелем. Закон тождества утверждает, что мысль, заключенная в некотором высказывании, остается неизменной на протяжении всего рассуждения, в котором это высказывание фигурирует. Закон непротиворечия. Высказывание не может быть одновременно истинным и ложным. Если высказывание А — истинно, то его отрицание Ᾱ должно быть ложным. Следовательно, логическое произведение высказывания и его отрицания должно быть ложно: А˄Ᾱ=0.

Закон исключенного третьего. Высказывание может быть либо истинным, либо ложным, третьего не дано. Закон двойного отрицания. Если дважды отрицать неко­торое высказывание, то в результате мы получим исходное высказывание. Законы идемпотентности. В алгебре логики нет показателей степеней и коэффициент
Слайд 19

Закон исключенного третьего. Высказывание может быть либо истинным, либо ложным, третьего не дано. Закон двойного отрицания. Если дважды отрицать неко­торое высказывание, то в результате мы получим исходное высказывание. Законы идемпотентности. В алгебре логики нет показателей степеней и коэффициентов. Конъюнкция одинаковых «сомножителей» равносильна одному из них: А˄А=А. Правило коммутативности. Можно менять местами логические переменные при операциях конъюнкции и дизъюнкции. A&B=B&A A˅B=B˅A

Логические элементы — это электронные устройства, которые преобразуют проходящие через них двоичные электрические сигналы по определенному закону. Логические элементы имеют один или несколько входов, на которые подаются электрические сигналы, обозначаемые условно 0, если отсутствует электрический си
Слайд 20

Логические элементы — это электронные устройства, которые преобразуют проходящие через них двоичные электрические сигналы по определенному закону. Логические элементы имеют один или несколько входов, на которые подаются электрические сигналы, обозначаемые условно 0, если отсутствует электрический сигнал, и 1, если имеется электрический сигнал. Также логические элементы имеют один выход, с которого снимается преобразованный электрический сигнал. Было доказано, что все электронные схемы компьютера могут быть реализованы с помощью трёх базовых логических элементов И, ИЛИ, НЕ.

Базовые логические элементы. Логический элемент «И». Логический элемент «ИЛИ». Логический элемент «НЕ»
Слайд 21

Базовые логические элементы

Логический элемент «И»

Логический элемент «ИЛИ»

Логический элемент «НЕ»

Обработка любой информации на компьютере сводится к выполнению процессором различных арифметических и логических операций. Для этого в состав процессора входит так называемое арифметико-логическое устройство (АЛУ). Оно состоит из ряда устройств, построенных на рассмотренных выше логических элементах
Слайд 22

Обработка любой информации на компьютере сводится к выполнению процессором различных арифметических и логических операций. Для этого в состав процессора входит так называемое арифметико-логическое устройство (АЛУ). Оно состоит из ряда устройств, построенных на рассмотренных выше логических элементах. Важнейшими из таких устройств являются триггеры, полусумматоры, сумматоры, шифраторы, дешифраторы, счетчики, регистры.

Сумматор – это электронная логическая схема, выполняющая суммирование двоичных чисел поразрядным сложением. Сумматор является центральным узлом арифметико-логического устройства процессора. Сумматор выполняет сложение многозначных двоичных чисел. Он представляет собой последовательное соединение одн
Слайд 23

Сумматор – это электронная логическая схема, выполняющая суммирование двоичных чисел поразрядным сложением. Сумматор является центральным узлом арифметико-логического устройства процессора. Сумматор выполняет сложение многозначных двоичных чисел. Он представляет собой последовательное соединение одноразрядных двоичных сумматоров, каждый из которых осуществляет сложение в одном разряде. Если при этом возникает переполнение разряда, то перенос суммируется с содержимым старшего соседнего разряда.

А, B – слагаемые; S – сумма; P – перенос. Таблица истинности:
Слайд 24

А, B – слагаемые; S – сумма; P – перенос. Таблица истинности:

Триггер - электронная схема, применяемая для хранения значения одноразрядного двоичного кода. Воздействуя на входы триггера, его переводят в одно из двух возможных состояний (0 или 1). С поступлением сигналов на входы триггера в зависимости от его состояния либо происходит переключение, либо исходно
Слайд 25

Триггер - электронная схема, применяемая для хранения значения одноразрядного двоичного кода. Воздействуя на входы триггера, его переводят в одно из двух возможных состояний (0 или 1). С поступлением сигналов на входы триггера в зависимости от его состояния либо происходит переключение, либо исходное состояние сохраняется. При отсутствии входных сигналов триггер сохраняет свое состояние сколь угодно долго.

Функциональная схема компьютера, состоящая из триггеров, предназначенная для запоминания многоразрядных кодов и выполнения над ними некоторых логических преобразований называется регистром. Упрощенно регистр можно представить как совокупность ячеек, в каждой из которых может быть записано одно из дв
Слайд 26

Функциональная схема компьютера, состоящая из триггеров, предназначенная для запоминания многоразрядных кодов и выполнения над ними некоторых логических преобразований называется регистром. Упрощенно регистр можно представить как совокупность ячеек, в каждой из которых может быть записано одно из двух значений: 0 или 1, то есть один разряд двоичного числа. С помощью регистров можно выполнять следующие операции: установку, сдвиг, преобразование. Основными типами регистров являются параллельные и последовательные (сдвигающие). Совокупность регистров, используемых ЭВМ для запоминания программы работы, исходных и промежуточных результатов называется оперативной памятью (ОП).

Список похожих презентаций

Основы логики логические основы компьютера

Основы логики логические основы компьютера

Логика –это наука о формах и способах мышления;особая форма мышления. Понятие - это форма мышления, фиксирующая основные, существенные признаки объекта. ...
Основы логики и логические основы построения компьютера

Основы логики и логические основы построения компьютера

Процессор компьютера выполняет арифметические и логические операции над двоичными кодами. И поэтому чтобы иметь представление об устройстве компьютера, ...
Основы логики и логические основы компьютера

Основы логики и логические основы компьютера

Выполните умозаключение. Логические элементы являются основой построения компьютеров. Элементной базой компьютеров являются вентили. Вентили – это ...
Логические основы построения компьютера

Логические основы построения компьютера

Цель. 1. Познакомить учащихся с логическими основами компьютера. 2. Ввести понятия логических выражений. 3. Научить строить таблицы для логических ...
Логические основы компьютера

Логические основы компьютера

Дискретный преобразователь, который после обработки входных двоичных сигналов выдает на выходе сигнал, являющийся значением одной из логических операций, ...
Логические основы устройства компьютера

Логические основы устройства компьютера

Ответьте на вопросы:. 1) Что такое составное высказывание? 2) Перечислите логические операции. 3) Что такое таблица истинности и как её заполнить? ...
Логические основы устройства компьютера

Логические основы устройства компьютера

1. Полусумматор двоичных чисел. 2. Сумматор двоичных чисел. Логические основы устройства компьютера. A B. Полусумматор двоичных чисел. S P. S=(A B) ...
Логические основы устройства компьютера

Логические основы устройства компьютера

Логические операции «И», «ИЛИ», «НЕ» лежат в основе работы преобразователей информации любого компьютера. американский математик, доказал применимость ...
Логические основы устройства компьютера

Логические основы устройства компьютера

Автор презентации «Логические основы устройства компьютера» Помаскин Юрий Иванович - учитель информатики МБОУ СОШ№5 г. Кимовска Тульской области. ...
Логические основы компьютера

Логические основы компьютера

Описание презентации. Данная презентация создана для демонстрации элементарных логических схем на уроках информатики в 10-11 классах по теме «Логические ...
Логические основы компьютера. Базовые логические элементы

Логические основы компьютера. Базовые логические элементы

Базовые логические элементы. Компьютер выполняет арифметические и логические операции при помощи т.н. базовых логических элементов, которые также ...
Логические основы устройства компьютера

Логические основы устройства компьютера

Микросхемы. Составим таблицу. Электрические схемы. . . Заполненная таблица. Пример 1. По заданной функции составить схему. Пример 2. Определить логические ...
Основы логики

Основы логики

Алгебра логики (булева алгебра) - это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ...
Основы логики

Основы логики

НА УРОКЕ:. Что такое логика; Основные формы мышления; Базовые логические операции; Логические выражения и таблицы истинности. Логика – это наука о ...
Основы логики - построение таблиц истинности

Основы логики - построение таблиц истинности

При изучении работы различных устройств компьютера приходится рассматривать такие его логические элементы, в которых реализуются сложные логические ...
Логические основы вычислительной техники

Логические основы вычислительной техники

№ 1 Составьте логическую формулу и упростите её. №2 Составьте логическую схему полусумматора на 2 входа. P= S=. №3 Упростить выражения:. (ab c) ...
Основы логики

Основы логики

ЛОГИКА -- ЭТО УЧЕНИЕ О СПОСОБАХ РАССУЖДЕНИЙ И ДОКАЗАТЕЛЬСТВ, НАУКА О ЗАКОНАХ И ФОРМАХ МЫШЛЕНИЯ. «LOGOS» -- СЛОВО, МЫСЛЬ, ПОНЯТИЕ, РАССУЖДЕНИЕ, ЗАКОН. ...
Основы логики

Основы логики

ФОРМЫ МЫШЛЕНИЯ. Логика – это наука о формах и способах мышления. Это учение о способах рассуждения и доказательств. Мышление. Понятие – выделение ...
Основы логики

Основы логики

Презентация к уроку информатики в 4 классе по программе А.В.Горячева (IV четверть 8 урок). Повторение. Алгоритмы и исполнители. Какие действия могут ...
Основы логики

Основы логики

Логика – это наука о формах и способах мышления. ОСНОВНЫЕ ПОНЯТИЯ: Д. Буль (1815-1864). Основные формы мышления. Понятие Умозаключение Высказывание. ...

Конспекты

Логические основы построения компьютера

Логические основы построения компьютера

Учитель информатики Быргазова Юлия Александровна, МБОУ Гимназия № 9 г.Усолье-Сибирское электронный адрес:. shruar. _78@m. ail. .ru. Законы логики. ...
Логические основы построения компьютера

Логические основы построения компьютера

ПЛАН-КОНСПЕКТ УРОКА:. «Логические операции». 1. ФИО. . . Соколова Людмила Ивановна. . 2. . Место работы. . ГБОУ СОШ №276, ...
Арифметические и логические основы работы компьютера

Арифметические и логические основы работы компьютера

Тема. : «Арифметические и логические основы работы компьютера». Цели. :. Образовательные:. сформировать у студентов понятие форм мышления;. ...
Арифметические основы построения компьютера

Арифметические основы построения компьютера

ТЕХНОЛОГИЧЕСКАЯ КАРТА ЗАНЯТИЯ. Отделение:. АиВТ. Группа, специальность:. 210414. (167). Дисциплина:. Информатика и ИКТ. Тема занятия:. ...
Основы логики

Основы логики

. Муниципальное общеобразовательное учреждение –. . средняя общеобразовательная школа №4 г. Асино Томской области. Конспект ...
Основы логики

Основы логики

Конспект урока с элементами ФГОС на тему «Основы логики». (9 класс). Цели:. . . Образовательная:. определяет понятия: понятие, высказывание, ...
Основы работы в MS Word

Основы работы в MS Word

Приложение 1. Создание и редактирование текстового документа. Основные операции с файлами документов в MS Word. Создание файла. ...
Основы создания HTML - страниц

Основы создания HTML - страниц

Рогозина Светлана Яковлевна МБОУ СОШ № 12 МО город-курорт Анапа. Краснодарский край, учитель информатики. . Урок по теме «Основы создания HTML. ...
Основы компьютерной графики. Знакомство с графическим редактором Paint

Основы компьютерной графики. Знакомство с графическим редактором Paint

Тема урока:. Основы компьютерной графики. Знакомство с графическим редактором. Paint. Цели урока:. Обучающие:. . сформировать у обучающихся ...
Основы компьютерных технологий

Основы компьютерных технологий

Урок по предмету «Основы компьютерных технологий». ТЕМА. Лабораторная работа №18. Создание простых баз данных на электрические приборы, установка ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:11 декабря 2018
Категория:Информатика
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации