- Мирное освоение космоса

Презентация "Мирное освоение космоса" по географии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Мирное освоение космоса" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: География. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

КОСМОС. Мирное освоение космоса. Работа ученика Павлова Е. Учитель Шиженская Н.Н. ГБОУ школа №104 Санкт-Петербурга
Слайд 1

КОСМОС

Мирное освоение космоса

Работа ученика Павлова Е. Учитель Шиженская Н.Н. ГБОУ школа №104 Санкт-Петербурга

Космос является глобальной средой, общим достоянием человечества. Теперь, когда космические программы существенно усложнились, их выполнение требует концентрации технических, экономических, интеллектуальных усилий многих стран и народов. Поэтому освоение космоса стало одной из важнейших международны
Слайд 2

Космос является глобальной средой, общим достоянием человечества. Теперь, когда космические программы существенно усложнились, их выполнение требует концентрации технических, экономических, интеллектуальных усилий многих стран и народов. Поэтому освоение космоса стало одной из важнейших международных, глобальных проблем. Мирное освоение Космоса, предусматривающее отказ от военных программ, базируется на использовании новейших достижений науки и техники, производства и управления. Оно уже обеспечивает огромную космическую информацию о Земле и ее ресурсах. Все отчетливее проступают черты будущей космической индустрии, космической технологии, применения космических энергоресурсов.

История освоения космоса. История развития космонавтики и ракетной техники знает немало имен, но основоположником научной космонавтики считается великий русский ученый Константин Эдуардович Циолковский. Уже в 1883 г. Циолковский высказал мысль о возможности использования реактивного движения для соз
Слайд 3

История освоения космоса

История развития космонавтики и ракетной техники знает немало имен, но основоположником научной космонавтики считается великий русский ученый Константин Эдуардович Циолковский. Уже в 1883 г. Циолковский высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. В работе Циолковского «Свободное пространство» рассматривается движение без силы тяжести, сопратевления воздуха и сил трения, описываются ощущения, которые ждут космонавтов в невесомости, предлагается принципиальная схема ракетного двигателя. Он пишет: «Положим, дана бочка, наполненная сильно сжатым газом. Если отвернуть один из ее кранов, то газ непрерывной струей устремится из бочки, причем упругость газа, отталкивающая его частицы в пространство, будет также непрерывно отталкивать и бочку.»

В 1893 г. Циолковский пишет научно-фантастическую повесть «На Луне» и вслед за ней в 1895 г. «Грезы о Земле и небе и эффекты всемирного тяготения». В 1903 г. Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», в которой развивает и всесторонне обосновывает идею использования ракет для космических полетов. В ряде других работ и, в частности, в работе «Космические ракетные поезда», опубликованной в 1929 г., К. Э. Циолковским изложены основы теории ракеты и ракетного двигателя на жидком топливе. Расчеты, выполненные Циолковским, показали, что осуществление космического полета основано на реальных возможностях и является делом ближайшего будущего. В письме к редактору журнала «Вестник воздухоплавания» Константин Эдуардович писал: «…Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникает за пределы атмосферы, а затем завоюет себе все околоземное пространство».

Константи́н Эдуа́рдович Циолко́вский. Никола́й Ива́нович Киба́льчич 
Слайд 4

Константи́н Эдуа́рдович Циолко́вский

Никола́й Ива́нович Киба́льчич 

Начало космической эры. И так через 40 лет после того как был найден проект летательного аппарата, созданный Кибальчичем, 4 октября 1957 г. бывший СССР  произвел запуск первого в мире искусственного спутника Земли. Первый советский спутник позволил впервые измерить плотность верхней атмосферы, получ
Слайд 5

Начало космической эры

И так через 40 лет после того как был найден проект летательного аппарата, созданный Кибальчичем, 4 октября 1957 г. бывший СССР  произвел запуск первого в мире искусственного спутника Земли. Первый советский спутник позволил впервые измерить плотность верхней атмосферы, получить данные о распространении радиосигналов в ионосфере, отработать вопросы выведения на орбиту, тепловой режим и др. Спутник представлял собой алюминиевую сферу диаметром 58 см и массой 83,6 кг с четырьмя штыревыми антеннами длинной 2,4-2,9 м. В герметичном корпусе спутника размещались аппаратура и источники электропитания. Начальные параметры орбиты составляли: высота перигея 228 км, высота апогея 947 км, наклонение 65,1 гр. 3 ноября Советский Союз сообщил о выведении на орбиту второго советского спутника. В отдельной герметической кабине находились собака Лайка и телеметрическая система для регистрации ее поведении в невесомости. Спутник был также снабжен научными приборами для исследования излучения Солнца и космических лучей.

Запуск искусственного спутника Земли.

6 декабря 1957 г. в США была предпринята попытка запустить спутник «Авангард-1» с помощью ракеты-носителя, разработанной Исследовательской лабораторией ВМФ .После зажигания ракета поднялась над пусковым столом, однако через секунду двигатели выключились и ракета упала на стол, взорвавшись от удара.
Слайд 6

6 декабря 1957 г. в США была предпринята попытка запустить спутник «Авангард-1» с помощью ракеты-носителя, разработанной Исследовательской лабораторией ВМФ .После зажигания ракета поднялась над пусковым столом, однако через секунду двигатели выключились и ракета упала на стол, взорвавшись от удара. 31 января 1958 г. был выведен на орбиту спутник «Эксплорер-1», американский ответ на запуск советских спутников. По размерам и массе он не был кандидатом в рекордсмены. Будучи длинной менее 1 м и диаметром только ~15,2 см, он имел массу всего лишь 4,8 кг. Однако его полезный груз был присоеденен к четвертой, последней ступени ракеты-носителя «Юнона-1». Спутник вместе с ракетой на орбите имел длину 205 см и массу 14 кг. На нем были установлены датчики наружной и внутренней температур, датчики эрозии и ударов для определения потоков микрометеоритов и счетчик Гейгера-Мюллера для регистрации проникающих космических лучей. Важный научный результат полета спутника состоял в открытии окружающих Земля радиационных поясов. Счетчик Гейгера-Мюллера прекратил счет, когда аппарат находился в апогее на высоте 2530 км, высота перигея составляла 360 км. 5 февраля 1958 г. в США была предпринята вторая попытка запустить спутник «Авангард-1», но она также закончилась аварией, как и первая попытка. Наконец 17 марта спутник был выведен на орбиту. В период с декабря 1957 г. по сентябрь 1959 г. было предпринято одиннадцать попыток вывести на орбиту «Авангард-1» только три из них были успешными. В период с декабря 1957 г. по сентябрь 1959 г. было предпринято одиннадцать попыток вывести на орбиту «Авангард

Оба спутника внесли много нового в космическую науку и технику (солнечные батареи, новые данные о плотности верхний атмосферы, точное картирование островов в Тихом океане и т.д.) 17 августа 1958 г. в США была предпринята первая попытка послать с мыса Канаверал в окрестности Луны зонд с научной аппар
Слайд 7

Оба спутника внесли много нового в космическую науку и технику (солнечные батареи, новые данные о плотности верхний атмосферы, точное картирование островов в Тихом океане и т.д.) 17 августа 1958 г. в США была предпринята первая попытка послать с мыса Канаверал в окрестности Луны зонд с научной аппаратурой. Она оказалась неудачной. Ракета поднялась и пролетела всего 16 км. Первая ступень ракеты взорвалась на 77 с полета. 11 октября 1958 г. была предпринята вторая попытка запуска лунного зонда «Пионер-1», также оказалась неудачной. Последующие несколько запусков также оказались неудачными, лишь 3 марта 1959 г. «Пионер-4», массой 6,1 кг частично выполнил поставленную задачу: пролетел мимо Луны на расстоянии 60000 км (вместо планируемых 24000 км). Так же как и при запуске спутника Земли, приоритет в запуске первого зонда принадлежит СССР, 2 января 1959 г. был запущен первый созданный руками человека объект, который был выведен на траекторию, проходящую достаточно близко от Луны, на орбиту спутника Солнца. Таким образом «Луна-1» впервые достигла второй космической скорости. «Луна-1» имела массу 361,3 кг и пролетела мимо Луны на расстоянии 5500 км. На расстоянии 113000 км от Земли с ракетной ступени, пристыкованной к «Луне-1», было выпущено облако паров натрия, образовавшее искусственную комету. Солнечное излучение вызвало яркое свечение паров натрия и оптические системы на Земле сфотографировали облако на фоне созвездия Водолея. «Луна-2» запущенная 12 сентября 1959 г. совершила первый в мире полет на другое небесное тело. В 390,2-килограммовой сфере размещались приборы, показавшие, что Луна не имеет магнитного поля и радиационного пояса. Автоматическая межпланетная станция (АМС) «Луна-3» была запущена 4 октября 1959 г. Вес станции равнялся 435 кг. Основной целью запуска был облет Луны и фотографирование ее обратной, невидимой с Земли, стороны. Фотографирование производилось 7 октября в течение 40 мин с высоты 6200 км над Луной.

Человек в космосе. 12 апреля 1961 г. в 9 ч 07 мин по московскому времени в нескольких десятках километров севернее поселка Тюратам в Казахстане на советском космодроме Байконур состоялся запуск межконтинентальной баллистической ракеты Р-7, в носовом отсеке которой размещался пилотируемый космический
Слайд 8

Человек в космосе

12 апреля 1961 г. в 9 ч 07 мин по московскому времени в нескольких десятках километров севернее поселка Тюратам в Казахстане на советском космодроме Байконур состоялся запуск межконтинентальной баллистической ракеты Р-7, в носовом отсеке которой размещался пилотируемый космический корабль «Восток» с майором ВВС Юрием Алексеевичем Гагариным на борту. Запуск прошел успешно. Космический корабль был выведен на орбиту с наклонением 65 гр, высотой перигея 181 км и высотой апогея 327 км и совершил один виток вокруг Земли за 89 мин. На 108-ой мин после запуска он вернулся на Землю, приземлившись в районе деревни Смеловка Саратовской области. Таким образом, спустя 4 года после выведения первого искусственного спутника Земли Советский Союз впервые в мире осуществил полет человека в космическое пространство.

Космический корабль состоял из двух отсеков. Спускаемый аппарат, являющийся одновременно кабиной космонавта, представлял собой сферу диаметром 2,3 м, покрытую абляционным материалом для тепловой защиты при входе в атмосферу. Управление кораблем осуществлялось автоматически, а также космонавтом. В полете непрерывно поддерживалась с Землей. Атмосфера корабля - смесь кислорода с азотом под давлением 1 атм. (760 мм рт. ст.). «Восток-1» имел массу 4730 кг, а с последней ступенью ракеты-носителя 6170 кг. Космический корабль «Восток» выводился в космос 5 раз, после чего было объявлено о его безопасности для полета человека.

Космический модуль «Восток»

1-й человек в космосе Родился 9 марта 1934г. В д. Клушино Гжатского р-на.
Слайд 9

1-й человек в космосе Родился 9 марта 1934г. В д. Клушино Гжатского р-на.

Через четыре недели после полета Гагарина 5 мая 1961 г. капитан 3-го ранга Алан Шепард стал первым американским астронавтом. Хотя он и не достиг околоземной орбиты, он поднялся над Землей на высоту около 186 км. Шепард запущенный с мыса Канаверал в  КК «Меркурий-3» с помощью модифицированной баллист
Слайд 10

Через четыре недели после полета Гагарина 5 мая 1961 г. капитан 3-го ранга Алан Шепард стал первым американским астронавтом. Хотя он и не достиг околоземной орбиты, он поднялся над Землей на высоту около 186 км. Шепард запущенный с мыса Канаверал в  КК «Меркурий-3» с помощью модифицированной баллистической ракеты «Редстоун», провел в полете 15 мин 22 с до посадки в Атлантическом океане. Он доказал, что человек в условиях невесомости может осуществлять ручное управление космическим кораблем. КК «Меркурий» значительно отличался от КК «Восток». Он состоял только из одного модуля - пилотируемой капсулы в форме усеченного конуса длинной 2,9 м и диаметром основания 1,89 м. Его герметичная оболочка из никелевого сплава имела обшивку из титана для защиты от нагрева при входе в атмосферу.

20 февраля 1962 г. США достигли околоземной орбиты. С мыса Канаверал был запущен корабль «Меркурий-6», пилотируемый подполковником ВМФ Джоном Гленном. Гленн пробыл на орбите только 4 ч 55 мин, совершив 3 витка до успешной посадки. Целью полета Гленна было определение возможности работы человека в КК
Слайд 11

20 февраля 1962 г. США достигли околоземной орбиты. С мыса Канаверал был запущен корабль «Меркурий-6», пилотируемый подполковником ВМФ Джоном Гленном. Гленн пробыл на орбите только 4 ч 55 мин, совершив 3 витка до успешной посадки. Целью полета Гленна было определение возможности работы человека в КК «Меркурий». Последний раз «Меркурий» был выведен в космос 15 мая 1963 г. 18 марта 1965 г. был выведен на орбиту КК «Восход» с двумя космонавтами на борту - командиром корабля полковником Павлом  Иваровичем Беляевым и вторым пилотом подполковником Алексеем Архиповичем Леоновым. Сразу после выхода на орбиту экипаж очистил себя от азота, вдыхая чистый кислород. Затем был развернут шлюзовой отсек : Леонов вошел в шлюзовой отсек, закрыл крышку люка КК и впервые в мире совершил выход в космическое пространство. Космонавт с автономной системой жизнеобеспечения находился вне кабины КК в течении 20 мин, временами отдаляясь от корабля на расстояние до 5 м. Во время выхода он был соединен с КК только телефонным и телемеметрическим кабелями. Таким образом, была практически подтверждена возможность пребывания и работы космонавта вне КК.

3 июня был запущен КК «Джемени-4» с капитанами Джеймсом Макдивиттом и Эдвардом Уайтом. Во время этого полета, продолжавшегося 97 ч 56 мин Уайт вышел из КК и провел вне кабины 21 мин, проверяя возможность маневра в космосе с помощью ручного реактивного пистолета на сжатом газе.

К большому сожалению освоение космоса не обошлось без жертв. 27 января 1967 г. экипаж готовившийся совершить первый  пилотируемый полет по программе «Аполлон» погиб во время пожара внутри КК сгорев за 15 с в атмосфере чистого кислорода. Вирджил Гриссом, Эдвард Уайт и Роджер Чаффи стали первыми амери
Слайд 12

К большому сожалению освоение космоса не обошлось без жертв. 27 января 1967 г. экипаж готовившийся совершить первый  пилотируемый полет по программе «Аполлон» погиб во время пожара внутри КК сгорев за 15 с в атмосфере чистого кислорода. Вирджил Гриссом, Эдвард Уайт и Роджер Чаффи стали первыми американскими астронавтами, погибшими в КК. 23 апреля с Байконура был запущен новый КК «Союз-1», пилотируемый полковником Владимиром Комаровым. Запуск прошел успешно.

На 18 витке, через 26 ч 45 мин, после запуска, Комаров начал ориентацию для входа в атмосферу. Все операции прошли нормально, но после входа в атмосферу и торможения отказала парашютная система. Космонавт погиб мгновенно в момент удара «Союза» о Землю со скоростью 644 км\ч. В дальнейшем Космос унес не одну человеческую жизнь, но эти жертвы были первыми. Нужно заметить, что в естественнонаучном и производительном планах мир стоит перед рядом глобальных проблем, решение которых требует объединённых усилий всех народов. Это проблемы сырьевых ресурсов, энергетики, контроля за состоянием окружающей среды и сохранения биосферы и другие. Огромную роль в кардинальном их решении будут играть космические исследования - одно из важнейших направлений научно-технической революции. Космонавтика ярко демонстрирует всему миру плодотворность мирного созидательного труда, выгоды объединения усилий разных стран в решении научных и народнохозяйственных задач.

С какими же проблемами сталкивается космонавтика и сами космонавты?
Слайд 13

С какими же проблемами сталкивается космонавтика и сами космонавты?

Жизнеобеспечение в космическом полёте - это создание и поддержание в течении всего полёта в жилых и рабочих отсеках К.К. таких условий, которые обеспечили бы экипажу работоспособность, достаточную для выполнения поставленной задачи, и минимальную вероятность возникновения патологических изменений в
Слайд 14

Жизнеобеспечение в космическом полёте - это создание и поддержание в течении всего полёта в жилых и рабочих отсеках К.К. таких условий, которые обеспечили бы экипажу работоспособность, достаточную для выполнения поставленной задачи, и минимальную вероятность возникновения патологических изменений в организме человека. Как это сделать? Необходимо существенно уменьшить степень воздействия на человека неблагоприятных внешних факторов космического полёта - вакуума, метеорических тел, проникающей радиации, невесомости, перегрузок; снабдить экипаж веществами и энергией без которых не возможна нормальная жизнедеятельность человека, - пищей, водой, кислородом и сетом; удалить продукты жизнедеятельности организма и вредные для здоровья вещества, выделяемые при работе систем и оборудования космического корабля; обеспечить потребности человека в движении, отдыхе, внешней информации и нормальных условиях труда; организовать медицинский контроль за состоянием здоровья экипажа и поддержание его на необходимом уровне. Пища и вода доставляются в космос в соответствующей упаковке, а кислород - в химически связанном виде. Если не проводить восстановление продуктов жизнедеятельности, то для экипажа из трёх человек на один год потребуется 11 тонн вышеперечисленных продуктов, что, согласитесь, составляет немалый вес, объём, да и как это всё будет хранится в течении года?!

В ближайшем будущем системы регенерации позволят почти полностью воспроизводить кислород и вод на борту станции. Уже давно начали использовать вода после умывания и душа, очищенную в системе регенерации. Выдыхаемая влага конденсируется в холодильно-сушильном агрегате, а затем регенерируется. Кислоро
Слайд 15

В ближайшем будущем системы регенерации позволят почти полностью воспроизводить кислород и вод на борту станции. Уже давно начали использовать вода после умывания и душа, очищенную в системе регенерации. Выдыхаемая влага конденсируется в холодильно-сушильном агрегате, а затем регенерируется. Кислород для дыхания извлекается из очищенной воды электролизом, а газообразный водород, реагируя с углекислым газом, поступающим из концентратора, образует воду, которая питает электролизер. Использование такой системы позволяет уменьшить в рассмотренном примере массу запасаемых веществ с 11 до 2т. В последнее время практикуется выращивание разнообразных видов растений прямо на борту корабля, что позволяет сократить запас пищи который необходимо брать в космос, об этом упоминал ещё в своих трудах Циолковский.

Проблемы освоения космоса. Воздействие ракетно-космической техники и воздушных судов гражданской авиации. При эксплуатации ракетно-космической техники оказывается воздействие на атмосферу, включая стратосферный озон, а также на подстилающую поверхность и экосистемы. Районы падения отделяющихся часте
Слайд 16

Проблемы освоения космоса

Воздействие ракетно-космической техники и воздушных судов гражданской авиации.

При эксплуатации ракетно-космической техники оказывается воздействие на атмосферу, включая стратосферный озон, а также на подстилающую поверхность и экосистемы. Районы падения отделяющихся частей ракет-носителей. Основными факторами негативного воздействия ракетно-космической деятельности на окружающую природную среду в районах падения отделяющихся частей ракет-носителей являются:

– загрязнение отдельных участков почвы, поверхностных и грунтовых вод компонентами ракетных топлив; – засорение территорий районов падения элементами отделяющихся конструкций ракет-носителей; – возможность взрывов и возникновения локальных очагов пожаров при падении ступеней средств выведения; – механические повреждения почвы и растительности, в том числе при последующей эвакуации отделяющихся частей ракет-носителей.

Воздействие ракетно-космической техники на атмосферу. Степень воздействия запусков ракет-носителей (РН) на приземную атмосферу и озоновый слой характеризуется следующими основными показателями: – уменьшение стратосферного озона при пусках носителей на жидкостных ракетных двигателях (ЖРД) составляет
Слайд 17

Воздействие ракетно-космической техники на атмосферу. Степень воздействия запусков ракет-носителей (РН) на приземную атмосферу и озоновый слой характеризуется следующими основными показателями:

– уменьшение стратосферного озона при пусках носителей на жидкостных ракетных двигателях (ЖРД) составляет в зависимости от класса носителя 0,00002–0,003% по отношению к общему уровню его разрушения; – доля оксидов азота, выбрасываемых при пусках ракет-носителей, весьма мала и составляет менее 0,01% аналогичных выбросов, производимых объектами промышленности, теплоэнергетики и транспорта; – выбросы в атмосферу углекислого газа составляют не более 0,00004% выбросов этого вещества другими антропогенными источниками. Таким образом, воздействие продуктов сгорания ракетного топлива на нижние и средние слои атмосферы существенно ниже по сравнению с другими техногенными источниками загрязнения.

Исследования показывают, что запуски ракет-носителей оказывают определенное воздействие на верхнюю атмосферу. При этом могут изменяться ее химический состав и проявляться динамические, тепловые, электромагнитные эффекты воздействия. Данные зондирования показывают, что после запуска ракеты-носителя в
Слайд 18

Исследования показывают, что запуски ракет-носителей оказывают определенное воздействие на верхнюю атмосферу. При этом могут изменяться ее химический состав и проявляться динамические, тепловые, электромагнитные эффекты воздействия. Данные зондирования показывают, что после запуска ракеты-носителя в течение примерно 1 ч происходит частичная перестройка структуры ионосферы на расстояниях до 2 тыс. км, которая проявляется в возникновении волновых возмущений ионосферы различного масштаба. В целом минимизация влияния пусков ракет-носителей на атмосферу может достигаться их рациональным планированием. Воздействие воздушных судов на верхние слои атмосферы. Полеты дозвуковых и будущих сверхзвуковых самолетов, как показывают исследования, обобщенные Международной организацией гражданской авиации (ИКАО), могут оказывать существенное влияние на верхние слои атмосферы в результате выбросов продуктов сгорания топлива. Так, вклад воздушных судов гражданской авиации в выбросы оксидов азота на больших высотах оценивается в 55% при том, что на малых высотах он составляет 2–4%, а по диоксиду углерода и потреблению топлива доля гражданской авиации в общем объеме выбросов и потребления иско- паемого топлива оценивается величиной примерно в 3%. Результаты моделирования воздействия авиации на окружающую среду показывают, что выбросы оксидов азота всеми имеющимися в мире дозвуковыми воздушными судами, выполняющими полеты в верхних слоях тропосферы (на высотах 10–13 км), могут привести к увеличению концентрации озона на 4–6%, а в средних и высоких широтах Северного полушария, в том числе в воздушных коридорах, открытых для мировой гражданской авиации над территорией России, увеличение концентрации озона может достичь 9%. Озон, присутствующий в повышенных концентрациях в верхних слоях тропосферы, как и диоксид углерода, усиливает "парниковый эффект" и может содействовать глобальному изменению климата.

Энергетическая проблема. В обществе по-прежнему довлеет нерациональная модель производства и потребления энергии. В ряду технологий недалекого будущего предлагается использовать предназначенный для уничтожения оружейный уран в мирных целях в космосе для создания энергетической сети, поставляющей с о
Слайд 19

Энергетическая проблема. В обществе по-прежнему довлеет нерациональная модель производства и потребления энергии. В ряду технологий недалекого будущего предлагается использовать предназначенный для уничтожения оружейный уран в мирных целях в космосе для создания энергетической сети, поставляющей с орбиты на планету экологически чистую энергию - отраженный свет. Об использование экологически чистой энергии из космоса еще в 1991 году говорил Римский Клуб - знаменитое собрание политиков и интеллектуалов, занимающихся решением глобальных проблем человечества. Для создания гигантских отражателей, наобходимы миллионы тонн материалов, доставка которых с Земли невозможна по экологическим и экономическим причинам. Ядерный потенциал, доставляемый в космос ракетами, может обеспечить получение необходимого количества внеземных материалов,в частности -астероидного железа. Ядерные двигатели могут доставить на орбиту небольшой астероид из группы сближающихся с Землей, с помощью которых, как предполагают специалисты НПО "Энергомаш", ИЦ им М.В.Келдыша и др.можно будет создать космическую энергоиндустриальную сеть - орбитальные платформы с отражателями солнечного света. Доставка следующих астероидов и расширение этой сети обеспечат в частности освещение городов, интенсификацию роста лесов и пр. Конечно, оружейный уран можно сжечь в АЭС, но проблему радиоактивных отходов этим не решить. К тому же переработка оружейного урана экономически очень невыгодна. Запасенная в ядерных зарядах энергия способна произвести переворот в методах и сроках освоения космоса, - считают специалисты, работающие над проектом.

Космонавтика нужна науке - она грандиозней и могучий инструмент изучения Вселенной, Земли, самого человека. С каждым днем все более расширяется сфера прикладного использования космонавтики.
Слайд 20

Космонавтика нужна науке - она грандиозней и могучий инструмент изучения Вселенной, Земли, самого человека. С каждым днем все более расширяется сфера прикладного использования космонавтики.

Список похожих презентаций

Мирное освоение Космоса

Мирное освоение Космоса

Освоение космоса стало одной из важнейших международных глобальных проблем. Космос является глобальной средой, общим достоянием человечества. Теперь, ...
Хозяйственное освоение юга Дальнего Востока

Хозяйственное освоение юга Дальнего Востока

Сельское хозяйство. 140,9 млн. десятин земли, пригодной для хозяйственного освоения. 22,5 млн. десятин принадлежит императорской фамилии. 23,9 млн. ...
Хозяйственное освоение Сибири

Хозяйственное освоение Сибири

Что будем изучать? Освоение Сибири русскими. Тобольск, Иркутск – старые города России. Изменение роли городов в процессе освоения Сибири. Освоение ...
Современное освоение планеты

Современное освоение планеты

Цель:. Где сегодня происходит хозяйственное освоение новых земель? Чем отличаются культурные ландшафты от естественных? Как найти гармоничные основы ...
Природа Поволжья. Население и хозяйственное освоение

Природа Поволжья. Население и хозяйственное освоение

Поволжье. Рельеф. Определите своеобразие рельефа Поволжья. Рельеф равнинный с общим падением высот с севера на юг к Каспийскому морю. Формы рельефа ...
Население и хозяйственное освоение Урала

Население и хозяйственное освоение Урала

Население и хозяйственное освоение Урала. Челябинск Курган Пермь Екатеринбург Оренбург Уфа Удмуртия. Люди заселяли Урал и продвигались постепенно, ...
Население и хозяйственное освоение Европейского Севера

Население и хозяйственное освоение Европейского Севера

ХОЗЯЙСТВЕННОЕ ОСВОЕНИЕ. Историко-географические факторы оказали большое влияние на особенности освоения Европейского Севера. В IX в. сюда в поисках ...
Взгляд на Югру из космоса

Взгляд на Югру из космоса

Выполнил работу: Зинатуллин Дамир Проверила: Авдюкова Т.Д. Цель:Изучить использование космического потенциала для реализации экономических, технических, ...

Конспекты

Изучение космоса

Изучение космоса

Естествознание 5 класс. Урок №____. Тема: Изучение космоса. Цель:. познакомить с фактами, показывающими развитие знаний о форме Земли, о материках, ...
Особенности географического положения Африки. Исследование и освоение

Особенности географического положения Африки. Исследование и освоение

Тема. . Особенности географического положения Африки. Исследование и освоение. Цель:. . . Образовательная. – формировать общее представление ...
Дальний Восток: освоение территории и население

Дальний Восток: освоение территории и население

Дальний Восток: освоение территории и население. Тип урока. : комбинированный. Цель:. сформировать у обучающихся географические знания об особенностях ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:География
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации