- Знакомство с инфразвуком и ультразвуком

Презентация "Знакомство с инфразвуком и ультразвуком" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Знакомство с инфразвуком и ультразвуком" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Ультразвук и инфразвук
Слайд 1

Ультразвук и инфразвук

Инфразвук. Инфразвук (от лат. infra — ниже, под)– механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом. Для инфразвука характерно малое поглощение в различных средах, поэтому он способен распространятся на огромные расстояния в воздухе, в
Слайд 2

Инфразвук

Инфразвук (от лат. infra — ниже, под)– механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом. Для инфразвука характерно малое поглощение в различных средах, поэтому он способен распространятся на огромные расстояния в воздухе, в воде и в земной коре.

Инфразвук в воде. Инфразвук может порождаться морем в результате периодических сжатий и разрежений воды. В этом случае инфразвук называют «голос моря».
Слайд 3

Инфразвук в воде

Инфразвук может порождаться морем в результате периодических сжатий и разрежений воды. В этом случае инфразвук называют «голос моря».

«Голос моря» может предупредить о приближающемся шторме. Своеобразными индикаторами шторма являются медузы. На краю «колокола» у медуз расположены примитивные слуховые колбочки, способные воспринимать инфразвуки с частотой 8-13 Гц. Они слышат шторм за сотни километров и за 20 часов до того, как он д
Слайд 4

«Голос моря» может предупредить о приближающемся шторме. Своеобразными индикаторами шторма являются медузы. На краю «колокола» у медуз расположены примитивные слуховые колбочки, способные воспринимать инфразвуки с частотой 8-13 Гц. Они слышат шторм за сотни километров и за 20 часов до того, как он достигнет этой местности, и уходят на глубину.

В определенных условиях, при совпадении частоты корпуса судна и воздействующих на него инфразвуковых волн, судно само становится источником этих волн, причем значительно усиленных. Крысы, услышав голос моря, спешат уйти с корабля, резонансная частота которого совпадает с частотой волн шторма. Они чу
Слайд 5

В определенных условиях, при совпадении частоты корпуса судна и воздействующих на него инфразвуковых волн, судно само становится источником этих волн, причем значительно усиленных. Крысы, услышав голос моря, спешат уйти с корабля, резонансная частота которого совпадает с частотой волн шторма. Они чувствуют, что такому кораблю может не поздоровится.

Естественными источниками инфразвуковых волн является не только шторм, но и цунами, землетрясения, ураганы, извержения вулканов, гром.
Слайд 6

Естественными источниками инфразвуковых волн является не только шторм, но и цунами, землетрясения, ураганы, извержения вулканов, гром.

К основным техногенный источникам инфразвука относится мощное оборудование (станки, котельные, транспорт), подводные и подземные взрывы, ветряные электростанции и даже вентиляционные шахты.
Слайд 7

К основным техногенный источникам инфразвука относится мощное оборудование (станки, котельные, транспорт), подводные и подземные взрывы, ветряные электростанции и даже вентиляционные шахты.

Инфразвук в медицине. В современной медицине используются не мало оборудования, применяющего для лечения инфразвук. В основном инфразвук применяется при лечении рака и глазных заболеваниях. Сложность применения инфразвука в медицине обусловлена, тем, что он оказывает губительное воздействие на орган
Слайд 8

Инфразвук в медицине

В современной медицине используются не мало оборудования, применяющего для лечения инфразвук. В основном инфразвук применяется при лечении рака и глазных заболеваниях. Сложность применения инфразвука в медицине обусловлена, тем, что он оказывает губительное воздействие на организм человека. Нужно провести большое количество испытаний, потратить множество лет работы, чтобы найти подходящие параметры воздействия.

Влияние инфразвука на человека. Инфразвук негативно влияет на здоровье людей, особенно на психическое здоровье. Наш мозг, работая, колеблется с разными частотами, в зависимости от вида деятельности. Мозг спящего человека колеблется с частотой 0,3-4 Гц, мозг бодрствующего человека – с частотой 9-13 Г
Слайд 9

Влияние инфразвука на человека

Инфразвук негативно влияет на здоровье людей, особенно на психическое здоровье. Наш мозг, работая, колеблется с разными частотами, в зависимости от вида деятельности. Мозг спящего человека колеблется с частотой 0,3-4 Гц, мозг бодрствующего человека – с частотой 9-13 Гц. Если на наш мозг будут действовать колебания той же или очень близкой частоты, то произойдет сбой работы мозга, сопровождаемый галлюцинациями. Инфразвук может воздействовать на центральную нервную систему, поэтому люди под действием инфразвука испытывают неприятные ощущения: от угнетенности до панического страха.

быть обусловлено еще одно необычное явление: «Летучий голландец» - легендарный корабль-призрак. Наше глазное яблоко колеблется с собственной частотой 18 Гц. При наступлении резонанса ухудшается острота зрения и снижается цветовая чувствительность. Возникает зрительная галлюцинация, видение фантомов.
Слайд 10

быть обусловлено еще одно необычное явление: «Летучий голландец» - легендарный корабль-призрак. Наше глазное яблоко колеблется с собственной частотой 18 Гц. При наступлении резонанса ухудшается острота зрения и снижается цветовая чувствительность. Возникает зрительная галлюцинация, видение фантомов.

Такое влияние инфразвука на психику человека могло быть причиной многочисленных случаев с исчезновением экипажа при полной сохранности судна и отличной погоде. Но до сих пор неизвестно, на самом ли деле именно инфразвук вынуждал людей сбрасываться с судна, испытывая дикий необъяснимый ужас. Инфразвуком может

Воздействием инфразвука обусловлена и морская болезнь: волна с частотой 12 Гц вызывает у человека сильное головокружение, так как заставляет резонировать его вестибулярный аппарат. Инфразвук высокой интенсивности, влекущий за собой резонанс, из-за совпадения частот колебаний внутренних органов и инф
Слайд 11

Воздействием инфразвука обусловлена и морская болезнь: волна с частотой 12 Гц вызывает у человека сильное головокружение, так как заставляет резонировать его вестибулярный аппарат. Инфразвук высокой интенсивности, влекущий за собой резонанс, из-за совпадения частот колебаний внутренних органов и инфразвука, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов. (Инфразвук с частотой 7 Гц смертелен)

оружие, воздействуя на весь организм, выводит его из строя. В США разработали 4 вида инфразвукового оружия (на картинке – вид инфразвукового оружия, предназначенное для одиночного бойца). Планируется, что инфразвуковое оружие войдет в военное применение и станет атрибутом американских полицейских. И
Слайд 12

оружие, воздействуя на весь организм, выводит его из строя. В США разработали 4 вида инфразвукового оружия (на картинке – вид инфразвукового оружия, предназначенное для одиночного бойца). Планируется, что инфразвуковое оружие войдет в военное применение и станет атрибутом американских полицейских.

Инфразвуковое оружие

Инфразвуковое оружие – один из видов ОМП ( оружие массового поражения), основанное на использовании направленного излучения мощных инфразвуковых колебаний. Это излучение способно проникать даже через бетонные стены и металлические преграды. Это

Ультразвук – механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда Гц. (Волны, имеющие частоту более миллиарда Гц, называются гиперзвуком). О существовании ультразвука ученым было известно давно, однако его практическое использование началось только в XX веке. На данный
Слайд 13

Ультразвук – механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда Гц. (Волны, имеющие частоту более миллиарда Гц, называются гиперзвуком). О существовании ультразвука ученым было известно давно, однако его практическое использование началось только в XX веке. На данный момент ультразвук широко применяют в самых разных сферах.

Ультразвук

Эхолокация. Эхолокация (от греч. еcho –отголосок и от лат. locatio – положение, размещение) – способ определения расстояния до объекта, по средству излучения и восприятия отраженных ультразвуковых сигналов. Эхолокация помогает некоторым животным ориентироваться в пространстве, обнаруживать объекты и
Слайд 14

Эхолокация

Эхолокация (от греч. еcho –отголосок и от лат. locatio – положение, размещение) – способ определения расстояния до объекта, по средству излучения и восприятия отраженных ультразвуковых сигналов. Эхолокация помогает некоторым животным ориентироваться в пространстве, обнаруживать объекты и охотиться в условиях абсолютной темноты: на глубинах океана, под землей, в пещерах.

Летучие мыши – одни из животных, которые используют эхолокацию для ориентации в пространстве. Они извлекают ультразвуковые волны с частотой от 40 до 100 кГц. В момент испускания этих волн мышцы в ушах летучих мышей закрывают ушные раковины для того, чтобы предотвратить повреждения слухового аппарата
Слайд 15

Летучие мыши – одни из животных, которые используют эхолокацию для ориентации в пространстве. Они извлекают ультразвуковые волны с частотой от 40 до 100 кГц. В момент испускания этих волн мышцы в ушах летучих мышей закрывают ушные раковины для того, чтобы предотвратить повреждения слухового аппарата. Волны, извлеченные мышью, отражаются от препятствий, от насекомых и от других объектов. Мышь улавливает отраженные волны и оценивает, в каком направлении от неё находится препятствие или добыча.

Ультразвук в природе. Эхолокация.

Дельфины тоже используют эхолокацию. Они способны излучать и воспринимать ультразвуковые волны с частотой до 300 кГц. Благодаря этому, они могут исследовать пространство, обнаруживать препятствия, искать пищу, общаться друг с другом и даже выражать своё эмоциональное состояние.
Слайд 16

Дельфины тоже используют эхолокацию. Они способны излучать и воспринимать ультразвуковые волны с частотой до 300 кГц. Благодаря этому, они могут исследовать пространство, обнаруживать препятствия, искать пищу, общаться друг с другом и даже выражать своё эмоциональное состояние.

Метод определения расстояния до объектов под водой при помощи ультразвуковых сигналов называется гидролокацией. На дне судна помещают излучатель и приемник ультразвука. Излучатель посылает ко дну короткие ультразвуковые сигналы. Время отправления каждого сигнала регистрируется прибором. Отражаясь от
Слайд 17

Метод определения расстояния до объектов под водой при помощи ультразвуковых сигналов называется гидролокацией. На дне судна помещают излучатель и приемник ультразвука. Излучатель посылает ко дну короткие ультразвуковые сигналы. Время отправления каждого сигнала регистрируется прибором. Отражаясь от морского дна, сигнал через некоторое время достигает приемника. Момент приёма сигнала тоже регистрируется. Таким образом, за время, которое проходит с момента отправления сигнала до момента его приёма, сигнал проходит путь, равный удвоенной глубине моря.

Гидролокация имеет большое значение в навигации для обнаружения невидимых подводных препятствий, при рыбной ловле для обнаружения косяков и отдельных крупных рыб, в океанологии для исследования дна, поиска затонувших судов, а также в военных целях: для обнаружения подводных лодок или кораблей, наблю
Слайд 18

Гидролокация имеет большое значение в навигации для обнаружения невидимых подводных препятствий, при рыбной ловле для обнаружения косяков и отдельных крупных рыб, в океанологии для исследования дна, поиска затонувших судов, а также в военных целях: для обнаружения подводных лодок или кораблей, наблюдения за ними, для определения координат объекта при применении торпедного или ракетного оружия.

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником. Если же в детали есть трещина, воздушная полость или другая неоднород
Слайд 19

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником. Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от неё и, возвращаясь, попадает в приемник. Такой метод называется ультразвуковой дефектоскопией.

Ультразвук в медицине. Ультразвук широко используют в медицине: как в диагностических целях, так и в качестве лечебного средства. Он обладает противовоспалительным и рассасывающим действием, ослабляет чувство боли. Ультразвуковые волны с частотой от 0,5 до 15 мГц способны проходить через ткани орган
Слайд 20

Ультразвук в медицине

Ультразвук широко используют в медицине: как в диагностических целях, так и в качестве лечебного средства. Он обладает противовоспалительным и рассасывающим действием, ослабляет чувство боли. Ультразвуковые волны с частотой от 0,5 до 15 мГц способны проходить через ткани организма, частично отражаясь от границ тканей разного состава и плотности. Таким образом, есть возможность распознать патологические изменения органов и тканей без хирургического вмешательства. Ультразвуковая терапия основана на том, что ультразвуковые волны определенных частот оказывают механическое, тепловое, физико-химическое воздействие на ткани, в результате чего в организме активируются обменные процессы и реакции иммунитета.

Аппарат ультразвукового исследования. Ультразвуковая терапия. Портативный аппарат УЗИ
Слайд 21

Аппарат ультразвукового исследования

Ультразвуковая терапия

Портативный аппарат УЗИ

В лабораториях и на производстве применяют ультразвуковые ванны для очистки лабораторной посуды и деталей от мелких частиц. В ювелирной промышленности ювелирные изделия тоже очищают от мелких частиц в ультразвуковых ваннах. Их также используют для очистки корнеплодов от частиц земли. В некоторых сти
Слайд 22

В лабораториях и на производстве применяют ультразвуковые ванны для очистки лабораторной посуды и деталей от мелких частиц. В ювелирной промышленности ювелирные изделия тоже очищают от мелких частиц в ультразвуковых ваннах. Их также используют для очистки корнеплодов от частиц земли. В некоторых стиральных машинах ультразвук применяется для особо тщательной стирки белья. Широко применяется ультразвук для приготовления однородных смесей. Если две несмешивающиеся жидкости (например масло и воду) влить в одну колбу и подвергнуть облучению ультразвуком, то образуется эмульсия. Из подобных эмульсий производят крема, краски для волос, косметику, фармацевтические изделия и др. Существует множество сфер применения ультразвука.

Благодарю за внимание!
Слайд 23

Благодарю за внимание!

Список похожих презентаций

Знакомство с молекулами

Знакомство с молекулами

Молекулы- это частицы, из которых состоят вещества. Молекула вещества – это мельчайшая частица данного вещества.. Самая малая частица воды – молекула ...
Знакомство с элементарными частицами

Знакомство с элементарными частицами

Группы элементарных частиц. Фотон— элементарная частица, квант электромагнитного излучения (в узком смысле — света) Лептоны — класс элементарных частиц, ...
Знакомство с кристаллическими и аморфными телами

Знакомство с кристаллическими и аморфными телами

Кристаллические тела. При наличии периодичности в расположении атомов (дальнего порядка) твердое тело является кристаллическим. Кристаллическая решетка. ...
Знакомство с законом Ома

Знакомство с законом Ома

План Введение Электрический ток Источники постоянного тока Электрическая цепь постоянного тока Закон Ома для участка цепи Последовательное и параллельное ...
Знакомство с законом Всемирного тяготения

Знакомство с законом Всемирного тяготения

Какой раздел физики называется механикой? Что мы называем кинематикой? Какие виды движения вам известны? Какой вопрос решает динамика? Перечислите ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Квантовая физика

Квантовая физика

П Л А Н 1. СТО А. Эйнштейна. 2. Тепловое излучение. 3. Фотоэффект. 4. Люминесценция. 5. Химическое действие света. 6. Световое давление. 7. Физический ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
«Давление твёрдых тел» физика

«Давление твёрдых тел» физика

Физический диктант. Обозначение площади – Единица площади – Площадь прямоугольника – Обозначение силы – Единица силы – Формула силы тяжести – Обозначение ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 ноября 2018
Категория:Физика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации