- Вектор магнитной индукции. Линии магнитной индукции

Презентация "Вектор магнитной индукции. Линии магнитной индукции" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Вектор магнитной индукции. Линии магнитной индукции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

16.10.2018. Вектор магнитной индукции. Линии магнитной индукции. Беляева Татьяна Васильевна Учитель физики МОУ «Высокоярская сош» Бакчарского района Томской области
Слайд 1

16.10.2018

Вектор магнитной индукции. Линии магнитной индукции.

Беляева Татьяна Васильевна Учитель физики МОУ «Высокоярская сош» Бакчарского района Томской области

Электричество и магнетизм. Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет назад. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.
Слайд 2

Электричество и магнетизм

Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет назад. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом и возникло представление о магнитном поле.

Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х.Эрстеда. В 1820 г. он обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее
Слайд 3

Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется глубокая связь, были опыты датского физика Х.Эрстеда. В 1820 г. он обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее

В том же году французский физик А.Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов. По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля
Слайд 4

В том же году французский физик А.Ампер наблюдал силовое взаимодействие двух проводников с токами и установил закон взаимодействия токов. По современным представлениям, проводники с током оказывают силовое действие друг на друга не непосредственно, а через окружающие их магнитные поля

Источниками магнитного поля являются движущиеся электрические заряды(токи). Магнитное поле возникает в пространстве, окружающем проводники с током.
Слайд 5

Источниками магнитного поля являются движущиеся электрические заряды(токи). Магнитное поле возникает в пространстве, окружающем проводники с током.

Гипотеза Ампера. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества.
Слайд 6

Гипотеза Ампера

Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества.

Магнитных зарядов не существует. Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Опыт, однако, показывает, что изолированных магнитных за
Слайд 7

Магнитных зарядов не существует

Ученые XIX века пытались создать теорию магнитного поля по аналогии с электростатикой, вводя в рассмотрение так называемые магнитные заряды двух знаков (например, северный N и южный S полюса магнитной стрелки). Опыт, однако, показывает, что изолированных магнитных зарядов не существует. Магнитное поле токов принципиально отличается от электрического, оно оказывает силовое действие только на движущиеся заряды (токи).

Силовая характеристика поля. Электрическое поле характеризуется векторной величиной, называемой напряжённостью электрического поля, и обозначается латинской буквой Е со стрелкой над ней. Характеристику магнитного поля называют вектором магнитной индукции и обозначают буквой В со стрелкой над ней.
Слайд 8

Силовая характеристика поля

Электрическое поле характеризуется векторной величиной, называемой напряжённостью электрического поля, и обозначается латинской буквой Е со стрелкой над ней. Характеристику магнитного поля называют вектором магнитной индукции и обозначают буквой В со стрелкой над ней.

Направление вектора магнитной индукции. вектор магнитной индукции В - силовая характеристика поля Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле. За положительное направление вектора B принимается направление от южного полюса S к северному полюс
Слайд 9

Направление вектора магнитной индукции

вектор магнитной индукции В - силовая характеристика поля Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.

За положительное направление вектора B принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Положительная нормаль направлена в ту сторону, куда перемещается буравчик с правой нарезкой, если вращать его по направлению тока в рамке.
Слайд 10

Положительная нормаль направлена в ту сторону, куда перемещается буравчик с правой нарезкой, если вращать его по направлению тока в рамке.

ПРАВИЛО БУРАВЧИКА. если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.
Слайд 11

ПРАВИЛО БУРАВЧИКА

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

линии магнитной индукции. Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми.
Слайд 12

линии магнитной индукции

Линии магнитной индукции всегда замкнуты, они нигде не обрываются. Это означает, что магнитное поле не имеет источников – магнитных зарядов. Силовые поля, обладающие этим свойством, называются вихревыми.

Линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор В в данной точке поля. В этом отношении линии магнитной индукции аналогичны линиям напряжённости электростатического поля.
Слайд 13

Линии магнитной индукции

Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор В в данной точке поля. В этом отношении линии магнитной индукции аналогичны линиям напряжённости электростатического поля.

Линии магнитной индукции для магнитного поля прямолинейного проводника с током. линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую
Слайд 14

Линии магнитной индукции для магнитного поля прямолинейного проводника с током

линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной этому проводнику с током. Центр окружностей находится на оси проводника. Стрелки на линиях указывают, в какую сторону направлен вектор магнитной индукции, касательный к данной линии

Картина магнитного поля катушки с током (соленоида). Картина линий магнитной индукции, построенная с помощью магнитных стрелок или малых контуров с током, показана на рисунке (соленоид дан в разрезе). Если длина соленоида много больше его размеров, то магнитное поле внутри соленоида можно считать од
Слайд 15

Картина магнитного поля катушки с током (соленоида)

Картина линий магнитной индукции, построенная с помощью магнитных стрелок или малых контуров с током, показана на рисунке (соленоид дан в разрезе). Если длина соленоида много больше его размеров, то магнитное поле внутри соленоида можно считать однородным. Линии магнитной индукции такого поля параллельны друг другу.

Вихревое магнитное поле
Слайд 16

Вихревое магнитное поле

Важной особенностью линий магнитного поля является то, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле. Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно
Слайд 17

Важной особенностью линий магнитного поля является то, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Магнитное поле - вихревое поле. Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобных электрическим, в природе нет.

Подведём итоги: мы научились связывать с каждой точкой магнитного поля определённое направление - направление вектора магнитной индукции. Это направление указывает магнитная стрелка или нормаль к маленькому контуру с током. магнитное поле не имеет источников; магнитных зарядов не существует.
Слайд 18

Подведём итоги:

мы научились связывать с каждой точкой магнитного поля определённое направление - направление вектора магнитной индукции. Это направление указывает магнитная стрелка или нормаль к маленькому контуру с током. магнитное поле не имеет источников; магнитных зарядов не существует.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ. Как движутся в однородном магнитном поле рамка с током и магнитная стрелка? к северному полюсу к южному полюсу только ориентируются 2) Укажите способы определения направления вектора магнитной индукции. по ориентации магнитной стрелки по ориентации рамки с током засыпанием
Слайд 19

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

Как движутся в однородном магнитном поле рамка с током и магнитная стрелка? к северному полюсу к южному полюсу только ориентируются 2) Укажите способы определения направления вектора магнитной индукции. по ориентации магнитной стрелки по ориентации рамки с током засыпанием железных опилок на подложку 3) Что называют линиями магнитной индукции? магнитные стрелки рамки с током линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля

4) Какие поля называют вихревыми? вокруг неподвижных зарядов вокруг движущихся физических тел вокруг движущихся электрических зарядов силовые линии которых замкнуты 5) Чем вихревое поле отличается от потенциального ? действует на неподвижные заряды действует на подвижные заряды его линии замкнуты на
Слайд 20

4) Какие поля называют вихревыми? вокруг неподвижных зарядов вокруг движущихся физических тел вокруг движущихся электрических зарядов силовые линии которых замкнуты 5) Чем вихревое поле отличается от потенциального ? действует на неподвижные заряды действует на подвижные заряды его линии замкнуты на себя

Правильно
Слайд 21

Правильно

неверно
Слайд 22

неверно

Неполный ответ
Слайд 23

Неполный ответ

Использованы материалы сайтов: http://schools.keldysh.ru/sch1275/vector/elect/el6.htm http://www.home-edu.ru/pages/ju_troickijj/28_marta_05y/tema_b1.htm http://smi.dp.ua/mir/1724-segodnya-den-rozhdeniya-gansa-xristiana-yersteda.html http://www.hde.kurganobl.ru/dist/disk/Shcool/Book/Sprav_material/El
Слайд 24

Использованы материалы сайтов:

http://schools.keldysh.ru/sch1275/vector/elect/el6.htm http://www.home-edu.ru/pages/ju_troickijj/28_marta_05y/tema_b1.htm http://smi.dp.ua/mir/1724-segodnya-den-rozhdeniya-gansa-xristiana-yersteda.html http://www.hde.kurganobl.ru/dist/disk/Shcool/Book/Sprav_material/El_Din/p51.htm http://netreferata.com/referat_rus_unzip/5216/refimages/image002.gif http://kazakh.files.wordpress.com/2008/05/kompas2.jpg Фон использован из коллекции Александровой З. В.

Список похожих презентаций

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Линии магнитной индукции

Возьмём два гибких проводника, укрепим их вертикально, а затем присоединим нижними концами к полюсам источника тока. Притяжения или отталкивания проводников ...
Изучение явления электромагнитной индукции

Изучение явления электромагнитной индукции

Явление электромагнитной индукции – в замкнутом проводящем контуре при изменении потока магнитной индукции , охватываемого этим контуром, возникает ...
Использование электромагнитной индукции

Использование электромагнитной индукции

Устройство. 1. Магнито-мягкий стальной сердечник 2.Две катушки с проволочными обмотками. Повышающий трансформатор - к‹1 Понижающий трансформатор - ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Сравнение электростатического и магнитного полей. Знаем:. Электрическое поле создается неподвижными заряженными частицами Магнитное поле – движущимися, ...
Закон электромагнитной индукции

Закон электромагнитной индукции

Электромагнитная индукция – это явление возникновения ЭДС индукции и индукционного тока в замкнутом проводнике при изменении магнитного потока, пронизывающего ...
Явление электромагнитной индукции

Явление электромагнитной индукции

I этап – Погружение в эксперимент и его отображение. Изучается явление возникновения электрического тока в замкнутом поводящем контуре в различных ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Часть 1. Историческая справка. Открытие электромагнитной индукции. Майкл Фарадей. 1821 год: «Превратить магнетизм в электричество». 1931 год – получил ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Проверка усвоения ранее изученного материала. Выберите варианты правильных ответов. 1. Магнитное поле существует… а) вокруг проводника с током б) ...
Открытие электромагнитной индукции (1831г., М.Фарадей)

Открытие электромагнитной индукции (1831г., М.Фарадей)

Электромагнитная индукция. Опыты Фарадея. . Правило Ленца. Возникновение ЭДС индукции в проводнике. . Закон электромагнитной индукции. ...
ЭДС индукции

ЭДС индукции

Правило буравчика. . Правило левой руки. . Правило Ленца. ЭДС индукции в движущихся проводниках. ε=. Найти ЭДС индукции в проводнике с длиной активной ...
Транспорт на магнитной подушке

Транспорт на магнитной подушке

Цель работы:. Описать основные характеристики транспорта на магнитной подушке и дальнейшие перспективы использования транспорта будущего. Задачи:. ...
Линии электропередач

Линии электропередач

Потребители электроэнергии имеются повсюду. Производиться же она в сравнительно немногих местах, близких к источникам топливо- и гидроресурсов. Электроэнергию ...
Линии связи и радиоволны

Линии связи и радиоволны

Что такое линии связи? Классификация линий связи. Что такое радиоволны? Распространение радиоволн Виды радиоволн Что такое радиолокация? Содержание. ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Квантовая физика

Квантовая физика

П Л А Н 1. СТО А. Эйнштейна. 2. Тепловое излучение. 3. Фотоэффект. 4. Люминесценция. 5. Химическое действие света. 6. Световое давление. 7. Физический ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Интересная физика

Интересная физика

Интересная физика. Предметная область Физика, информатика Участники: учащиеся 7 – 11 классов, учителя, родители. Цели и задачи: Изучить физику в более ...

Конспекты

Модуль вектора магнитной индукции. Модуль силы Ампера

Модуль вектора магнитной индукции. Модуль силы Ампера

Урок № 9 класс. . Тема: Модуль вектора магнитной индукции. Модуль силы Ампера. . Цель урока. : сформировать понятие о модуле магнитной индукции ...
Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции Фарадея. Электромагнитная индукция

Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции Фарадея. Электромагнитная индукция

Урок № 45-169 Обучающий модуль №4 «Электромагнитная индукция». Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1 г.Павлово. . КОНСПЕКТ УРОКА. Предмет: ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Технологическая карта урока. Сведения об авторе: Вяткина Татьяна Борисовна, учитель физики МБОУ "СОШ№3 г.Осы". . Технологическая карта урока:. ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Стерлитамакский районный отдел образования. Конспект урока по физике. в 9-ом классе на тему:. «Явление электромагнитной индукции». посвященный ...
Изучение явления электромагнитной индукции

Изучение явления электромагнитной индукции

Лабораторная работа №4 Изучение явления электромагнитной индукции. Условие задачи:.  Лабораторная работа №4 Изучение явления электромагнитной индукции. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:17 октября 2018
Категория:Физика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации