- Явление электромагнитной индукции

Презентация "Явление электромагнитной индукции" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Явление электромагнитной индукции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Явление электромагнитной индукции. Выполнила ученица 11 «А» класса Степаненко Лина
Слайд 1

Явление электромагнитной индукции

Выполнила ученица 11 «А» класса Степаненко Лина

Часть 1. Историческая справка. Открытие электромагнитной индукции
Слайд 2

Часть 1

Историческая справка

Открытие электромагнитной индукции

Майкл Фарадей. 1821 год: «Превратить магнетизм в электричество». 1931 год – получил электрический ток с помощью магнитного поля. 1791 – 1867 г.г., английский физик, Почетный член Петербургской Академии Наук (1830), Основоположник учения об электро- магнитном поле; ввел понятия «электрическое» и «маг
Слайд 3

Майкл Фарадей

1821 год: «Превратить магнетизм в электричество». 1931 год – получил электрический ток с помощью магнитного поля

1791 – 1867 г.г., английский физик, Почетный член Петербургской Академии Наук (1830), Основоположник учения об электро- магнитном поле; ввел понятия «электрическое» и «магнитное поле»; высказал идею существования электромагнитных волн.

29 августа 1831 года. «На широкую деревянную катушку была намотана медная проволока длиной в 203 фута и между витками её намотана проволока такой же длины, изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, другая – с сильной батареей… При замыкани
Слайд 4

29 августа 1831 года

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута и между витками её намотана проволока такой же длины, изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, другая – с сильной батареей… При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра…»

Электромагнитная индукция – физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром. Возникающий при этом ток называют индукционным. !Элект
Слайд 5

Электромагнитная индукция – физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром. Возникающий при этом ток называют индукционным.

!Электрический ток возникал тогда, когда проводник оказывался в области действия переменного магнитного поля.

17 октября 1831 года
Слайд 6

17 октября 1831 года

Часть 2. Направление индукционного тока
Слайд 7

Часть 2

Направление индукционного тока

Алгоритм определения направления индукционного тока. 1. Определить направление линий индукции внешнего поля В(выходят из N и входят в S). 2. Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то ∆Ф>0, если выдвигается, то ∆Ф0, то линии В и В′
Слайд 8

Алгоритм определения направления индукционного тока

1. Определить направление линий индукции внешнего поля В(выходят из N и входят в S). 2. Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то ∆Ф>0, если выдвигается, то ∆Ф0, то линии В и В′ направлены в противоположные стороны; если ∆Ф

∆Ф характеризуется изменением числа линий В, пронизывающих контур.

Правило Ленца. Э.Х.Ленц 1804 – 1865 г.г., академик, ректор Петербургского Университета. - Магнит приближается (ΔФ>0) – кольцо отталкивается; - Магнит удаляется (ΔФ. Индукционный ток всегда имеет такое направление, при котором возникает противодействие причинам, его породившим.
Слайд 9

Правило Ленца

Э.Х.Ленц 1804 – 1865 г.г., академик, ректор Петербургского Университета

- Магнит приближается (ΔФ>0) – кольцо отталкивается; - Магнит удаляется (ΔФ

Индукционный ток всегда имеет такое направление, при котором возникает противодействие причинам, его породившим.

Часть 3. Закон электромагнитной индукции
Слайд 10

Часть 3

Закон электромагнитной индукции

ЭДС индукции в движущихся проводниках. При движении проводника в магнитном поле со скоростью v вместе с ним с той же скоростью движутся «+» и «-» заряды, находящиеся в проводнике. На них в магнитном поле в противоположные стороны действует сила Лоренца, что приводит к перераспределению зарядов - воз
Слайд 11

ЭДС индукции в движущихся проводниках

При движении проводника в магнитном поле со скоростью v вместе с ним с той же скоростью движутся «+» и «-» заряды, находящиеся в проводнике. На них в магнитном поле в противоположные стороны действует сила Лоренца, что приводит к перераспределению зарядов - возникает ЭДС.

Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура. ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, огранич
Слайд 12

Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура.

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

Часть 4. Самоиндукция, индуктивность
Слайд 13

Часть 4

Самоиндукция, индуктивность

Индуктивность. Индуктивностью контура L называют коэффициент пропорциональности между силой тока в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. L зависит лишь от формы и размеров проводящего контура, а также магнитной проницаемости среды, в которой он находится.
Слайд 14

Индуктивность

Индуктивностью контура L называют коэффициент пропорциональности между силой тока в проводящем контуре и созданным им магнитным потоком, пронизывающим этот контур. L зависит лишь от формы и размеров проводящего контура, а также магнитной проницаемости среды, в которой он находится.

Самоиндукция. Самоиндукция – возникновение ЭДС индукции в проводящем контуре при изменении в нём силы тока. Лампа Л1 будет загораться позже ламы Л2, т.к. возникающая ЭДС самоиндукции, будет препятствовать нарастанию тока в цепи.
Слайд 15

Самоиндукция

Самоиндукция – возникновение ЭДС индукции в проводящем контуре при изменении в нём силы тока.

Лампа Л1 будет загораться позже ламы Л2, т.к. возникающая ЭДС самоиндукции, будет препятствовать нарастанию тока в цепи.

Применение
Слайд 16

Применение

Основные источники электромагнитного поля. В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы,
Слайд 17

Основные источники электромагнитного поля

В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы, ретрансляторы). Электротранспорт. Радарные установки.

Линии электропередач. Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее эле
Слайд 18

Линии электропередач

Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м.

Электропроводка. К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях
Слайд 19

Электропроводка

К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

Бытовые электроприборы. Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильн
Слайд 20

Бытовые электроприборы

Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

Спутниковая связь. Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи с
Слайд 21

Спутниковая связь

Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

Электротранспорт. Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот [0..1000]Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамва
Слайд 22

Электротранспорт

Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот [0..1000]Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем).

Радарные установки. Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучени
Слайд 23

Радарные установки

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

Список похожих презентаций

Явление электромагнитной индукции

Явление электромагнитной индукции

I этап – Погружение в эксперимент и его отображение. Изучается явление возникновения электрического тока в замкнутом поводящем контуре в различных ...
Явление электромагнитной индукции. 9-й класс

Явление электромагнитной индукции. 9-й класс

Цель урока:. Ввести учащихся в мир электромагнитной индукции, организовав исследовательскую деятельность учащихся. Показать практическую значимость ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Сравнение электростатического и магнитного полей. Знаем:. Электрическое поле создается неподвижными заряженными частицами Магнитное поле – движущимися, ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Проверка усвоения ранее изученного материала. Выберите варианты правильных ответов. 1. Магнитное поле существует… а) вокруг проводника с током б) ...
Закон электромагнитной индукции

Закон электромагнитной индукции

Электромагнитная индукция – это явление возникновения ЭДС индукции и индукционного тока в замкнутом проводнике при изменении магнитного потока, пронизывающего ...
Правило Ленца. Явление самоиндукции

Правило Ленца. Явление самоиндукции

Цель: научиться определять направление индукционного тока; на примере правила Ленца сформулировать представление о фундаментальности ЗСЭ; разъяснить ...
Открытие электромагнитной индукции (1831г., М.Фарадей)

Открытие электромагнитной индукции (1831г., М.Фарадей)

Электромагнитная индукция. Опыты Фарадея. . Правило Ленца. Возникновение ЭДС индукции в проводнике. . Закон электромагнитной индукции. ...
Использование электромагнитной индукции

Использование электромагнитной индукции

Устройство. 1. Магнито-мягкий стальной сердечник 2.Две катушки с проволочными обмотками. Повышающий трансформатор - к‹1 Понижающий трансформатор - ...
Изучение явления электромагнитной индукции

Изучение явления электромагнитной индукции

Явление электромагнитной индукции – в замкнутом проводящем контуре при изменении потока магнитной индукции , охватываемого этим контуром, возникает ...
Явление интерференции

Явление интерференции

Цель урока:. Продолжить изучение интерференционных явлений, познакомить студентов с интерференцией и дифракцией света и их применением в технике и ...
Явление дисперсии света

Явление дисперсии света

Актуализация опорных знаний. Что изучает оптика? Какие существовали взгляды на природу света? Что такое свет в теории Ньютона? Что такое свет в волновой ...
Явление в физике

Явление в физике

Что изучает физика. Физика – одна из основных наук о природе. Она изучает разные изменения или явления. В физике изучают: механические, электрические, ...
Явление трения. Сила трения

Явление трения. Сила трения

Цели урока. Ознакомить учащихся с явлением трения; Сформулировать понятие силы трения; Экспериментально установить, от чего зависит сила трения; Продолжить ...
Явление радиоактивности

Явление радиоактивности

Предположение о том, что все тела состоят из мельчайших частиц, было высказано древнегреческим философом Демокритом еще 2500 лет назад. Частицы были ...
Сила. Явление тяготения. Сила тяжести

Сила. Явление тяготения. Сила тяжести

Понятие силы первоначально возникло из ощущения мышечного усилия. Чтобы поднять груз, бросить копьё, необходимо некоторое напряжение мышц, причем ...
Исследование опасности электромагнитной волны

Исследование опасности электромагнитной волны

Насколько человек, далёкий от научного мира проблем, действительно знаком с окружающим миром? ? Цель: рассказать о влиянии электромагнитных излучений, ...
Явление интерференции света

Явление интерференции света

Разложение белого света в спектр при прохождении через призму обусловлено интерференцией света отражением света дисперсией света дифракцией света. ...
Явление молнии

Явление молнии

Мо́лния — гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим ...
Сила. Явление тяготения. Сила тяжести

Сила. Явление тяготения. Сила тяжести

Примеры взаимодействия тел. Какие тела взаимодействуют между собой? Что происходит с направлением движения мяча, при воздействии на него ногой мальчика? ...
Явление света

Явление света

ИСТОРИЯ ВОЗНИКНОВЕНИЯ ОПТИКИ. 6 в. до н. э. Пифагор, 4 в. до н.э. Аристотель, 3 в. до н. э. Евклид занимались изучением света. Евклид изложил 2 закона ...

Конспекты

Явление электромагнитной индукции. Модели и моделирование в среде электронных таблиц Exсel

Явление электромагнитной индукции. Модели и моделирование в среде электронных таблиц Exсel

Интегрированный урок (физика + информатика) по теме:. " Явление электромагнитной индукции. Модели и моделирование в среде электронных таблиц. Ex. ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1 г.Павлово. . КОНСПЕКТ УРОКА. Предмет: ...
Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции Фарадея. Электромагнитная индукция

Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной индукции Фарадея. Электромагнитная индукция

Урок № 45-169 Обучающий модуль №4 «Электромагнитная индукция». Явление электромагнитной индукции. Магнитный поток. Правило Ленца. Закон электромагнитной ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Стерлитамакский районный отдел образования. Конспект урока по физике. в 9-ом классе на тему:. «Явление электромагнитной индукции». посвященный ...
Явление электромагнитной индукции

Явление электромагнитной индукции

Технологическая карта урока. Сведения об авторе: Вяткина Татьяна Борисовна, учитель физики МБОУ "СОШ№3 г.Осы". . Технологическая карта урока:. ...
Изучение явления электромагнитной индукции

Изучение явления электромагнитной индукции

Лабораторная работа №4 Изучение явления электромагнитной индукции. Условие задачи:.  Лабораторная работа №4 Изучение явления электромагнитной индукции. ...
Явление тяготения. Сила тяжести

Явление тяготения. Сила тяжести

Муниципальное бюджетное образовательное учреждение. Таловская средняя общеобразовательная школа. Урок физики в 7 классе. по теме «Явление тяготения. ...
Явление тяготения. Сила тяжести

Явление тяготения. Сила тяжести

7 класс. Урок на тему « Явление тяготения. Сила тяжести». Цели урока:. . 1. Образовательные:. . Познакомить с явлением тяготения, ввести понятие ...
Явление преломления света

Явление преломления света

. Тема урока: «Явление преломления света». Предмет : физика. Класс: 8. Автор: Дубровская Ирина Александровна. Образовательное учреждение: ...
Явление на границе твердое тело – жидкость (смачивание и не смачивание)

Явление на границе твердое тело – жидкость (смачивание и не смачивание)

Попова Людмила Ивановна. . Разработка урока. Тема урока:. Явление на границе твердое тело – жидкость (смачивание и не смачивание). Цели и задачи ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.